Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2025 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
# LICENSE is in incl_licenses directory. | |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
# This file is modified from https://github.com/haotian-liu/LLaVA/ | |
import os | |
import torch | |
from transformers import PretrainedConfig, PreTrainedModel | |
from .base_projector import MultimodalProjector, MultimodalProjectorConfig | |
from .speech_base_projector import SpeechMultimodalProjector, SpeechMultimodalProjectorConfig | |
from .sound_base_projector import SoundMultimodalProjector, SoundMultimodalProjectorConfig | |
def build_speech_mm_projector(model_type_or_path: str, config: PretrainedConfig) -> PreTrainedModel: | |
if model_type_or_path is None: | |
return None | |
## load from pretrained model | |
if config.resume_path: | |
assert os.path.exists(model_type_or_path), f"Resume speech mm projector path {model_type_or_path} does not exist!" | |
return SpeechMultimodalProjector.from_pretrained(model_type_or_path, config, torch_dtype=eval(config.model_dtype)) | |
## build from scratch | |
else: | |
print("WARNING: Building speech multimodal projector from scratch!") | |
speech_mm_projector_cfg = SpeechMultimodalProjectorConfig(model_type_or_path) | |
speech_mm_projector = SpeechMultimodalProjector(speech_mm_projector_cfg, config).to(eval(config.model_dtype)) | |
return speech_mm_projector | |
def build_sound_mm_projector(model_type_or_path: str, config: PretrainedConfig) -> PreTrainedModel: | |
if model_type_or_path is None: | |
return None | |
## load from pretrained model | |
if config.resume_path: | |
print(config.resume_path) | |
assert os.path.exists(model_type_or_path), f"Resume sound mm projector path {model_type_or_path} does not exist!" | |
return SoundMultimodalProjector.from_pretrained(model_type_or_path, config, torch_dtype=eval(config.model_dtype)) | |
# build from scratch | |
else: | |
print("WARNING: Building sound multimodal projector from scratch!") | |
sound_mm_projector_cfg = SoundMultimodalProjectorConfig(model_type_or_path) | |
sound_mm_projector = SoundMultimodalProjector(sound_mm_projector_cfg, config).to(eval(config.model_dtype)) | |
return sound_mm_projector | |