Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2025 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
# LICENSE is in incl_licenses directory. | |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import os | |
import typing | |
from typing import List, Optional | |
if typing.TYPE_CHECKING: | |
from transformers import PreTrainedModel | |
else: | |
PreTrainedModel = None | |
__all__ = ["load"] | |
def load( | |
model_path: str, | |
model_base: Optional[str] = None, | |
devices: Optional[List[int]] = None, | |
**kwargs, | |
) -> PreTrainedModel: | |
import torch | |
from llava.conversation import auto_set_conversation_mode | |
from llava.mm_utils import get_model_name_from_path | |
from llava.model.builder import load_pretrained_model | |
auto_set_conversation_mode(model_path) | |
model_name = get_model_name_from_path(model_path) | |
model_path = os.path.expanduser(model_path) | |
if os.path.exists(os.path.join(model_path, "model")): | |
model_path = os.path.join(model_path, "model") | |
# Set `max_memory` to constrain which GPUs to use | |
if devices is not None: | |
assert "max_memory" not in kwargs, "`max_memory` should not be set when `devices` is set" | |
kwargs.update(max_memory={device: torch.cuda.get_device_properties(device).total_memory for device in devices}) | |
model = load_pretrained_model(model_path, model_name, model_base, **kwargs)[1] | |
return model | |