PhysicsNeMo-MHD / mhd /train_mhd_vec_pot_tfno.py
carmelog's picture
init: magnetohydrodynamics with physicsnemo
830a558
import os
import hydra
from omegaconf import OmegaConf
import torch
from omegaconf import DictConfig
from physicsnemo.distributed import DistributedManager
from physicsnemo.launch.logging import LaunchLogger, PythonLogger
from physicsnemo.launch.utils import load_checkpoint, save_checkpoint
from physicsnemo.sym.hydra import to_absolute_path
from torch.nn.parallel import DistributedDataParallel
from torch.optim import AdamW
from dataloaders import Dedalus2DDataset, MHDDataloaderVecPot
from losses import LossMHDVecPot_PhysicsNeMo
from tfno import TFNO
from utils.plot_utils import plot_predictions_mhd, plot_predictions_mhd_plotly
dtype = torch.float
torch.set_default_dtype(dtype)
@hydra.main(
version_base="1.3", config_path="config", config_name="train_mhd_vec_pot_tfno.yaml"
)
def main(cfg: DictConfig) -> None:
DistributedManager.initialize() # Only call this once in the entire script!
dist = DistributedManager() # call if required elsewhere
cfg = OmegaConf.to_container(cfg, resolve=True)
# initialize monitoring
log = PythonLogger(name="mhd_pino")
log.file_logging()
log_params = cfg["log_params"]
# Load config file parameters
model_params = cfg["model_params"]
dataset_params = cfg["dataset_params"]
train_loader_params = cfg["train_loader_params"]
val_loader_params = cfg["val_loader_params"]
loss_params = cfg["loss_params"]
optimizer_params = cfg["optimizer_params"]
train_params = cfg["train_params"]
load_ckpt = cfg["load_ckpt"]
output_dir = cfg["output_dir"]
output_dir = to_absolute_path(output_dir)
os.makedirs(output_dir, exist_ok=True)
data_dir = dataset_params["data_dir"]
ckpt_path = train_params["ckpt_path"]
# Construct dataloaders
dataset_train = Dedalus2DDataset(
dataset_params["data_dir"],
output_names=dataset_params["output_names"],
field_names=dataset_params["field_names"],
num_train=dataset_params["num_train"],
num_test=dataset_params["num_test"],
num=dataset_params["num"],
use_train=True,
)
dataset_val = Dedalus2DDataset(
data_dir,
output_names=dataset_params["output_names"],
field_names=dataset_params["field_names"],
num_train=dataset_params["num_train"],
num_test=dataset_params["num_test"],
num=dataset_params["num"],
use_train=False,
)
mhd_dataloader_train = MHDDataloaderVecPot(
dataset_train,
sub_x=dataset_params["sub_x"],
sub_t=dataset_params["sub_t"],
ind_x=dataset_params["ind_x"],
ind_t=dataset_params["ind_t"],
)
mhd_dataloader_val = MHDDataloaderVecPot(
dataset_val,
sub_x=dataset_params["sub_x"],
sub_t=dataset_params["sub_t"],
ind_x=dataset_params["ind_x"],
ind_t=dataset_params["ind_t"],
)
dataloader_train, sampler_train = mhd_dataloader_train.create_dataloader(
batch_size=train_loader_params["batch_size"],
shuffle=train_loader_params["shuffle"],
num_workers=train_loader_params["num_workers"],
pin_memory=train_loader_params["pin_memory"],
distributed=dist.distributed,
)
dataloader_val, sampler_val = mhd_dataloader_val.create_dataloader(
batch_size=val_loader_params["batch_size"],
shuffle=val_loader_params["shuffle"],
num_workers=val_loader_params["num_workers"],
pin_memory=val_loader_params["pin_memory"],
distributed=dist.distributed,
)
# define FNO model
model = TFNO(
in_channels=model_params["in_dim"],
out_channels=model_params["out_dim"],
decoder_layers=model_params["decoder_layers"],
decoder_layer_size=model_params["fc_dim"],
dimension=model_params["dimension"],
latent_channels=model_params["layers"],
num_fno_layers=model_params["num_fno_layers"],
num_fno_modes=model_params["modes"],
padding=[model_params["pad_z"], model_params["pad_y"], model_params["pad_x"]],
rank=model_params["rank"],
factorization=model_params["factorization"],
fixed_rank_modes=model_params["fixed_rank_modes"],
decomposition_kwargs=model_params["decomposition_kwargs"],
).to(dist.device)
# Set up DistributedDataParallel if using more than a single process.
# The `distributed` property of DistributedManager can be used to
# check this.
if dist.distributed:
ddps = torch.cuda.Stream()
with torch.cuda.stream(ddps):
model = DistributedDataParallel(
model,
device_ids=[dist.local_rank], # Set the device_id to be
# the local rank of this process on
# this node
output_device=dist.device,
broadcast_buffers=dist.broadcast_buffers,
find_unused_parameters=dist.find_unused_parameters,
)
torch.cuda.current_stream().wait_stream(ddps)
# Construct optimizer and scheduler
optimizer = AdamW(
model.parameters(),
betas=optimizer_params["betas"],
lr=optimizer_params["lr"],
weight_decay=0.1,
)
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=optimizer_params["milestones"],
gamma=optimizer_params["gamma"],
)
# Construct Loss class
mhd_loss = LossMHDVecPot_PhysicsNeMo(**loss_params)
# Load model from checkpoint (if exists)
loaded_epoch = 0
if load_ckpt:
loaded_epoch = load_checkpoint(
ckpt_path, model, optimizer, scheduler, device=dist.device
)
# Training Loop
epochs = train_params["epochs"]
ckpt_freq = train_params["ckpt_freq"]
names = dataset_params["fields"]
input_norm = torch.tensor(model_params["input_norm"]).to(dist.device)
output_norm = torch.tensor(model_params["output_norm"]).to(dist.device)
for epoch in range(max(1, loaded_epoch + 1), epochs + 1):
with LaunchLogger(
"train",
epoch=epoch,
num_mini_batch=len(dataloader_train),
epoch_alert_freq=1,
) as log:
if dist.distributed:
sampler_train.set_epoch(epoch)
# Train Loop
model.train()
for i, (inputs, outputs) in enumerate(dataloader_train):
inputs = inputs.type(torch.FloatTensor).to(dist.device)
outputs = outputs.type(torch.FloatTensor).to(dist.device)
# Zero Gradients
optimizer.zero_grad()
# Compute Predictions
pred = (
model((inputs / input_norm).permute(0, 4, 1, 2, 3)).permute(
0, 2, 3, 4, 1
)
* output_norm
)
# Compute Loss
loss, loss_dict = mhd_loss(pred, outputs, inputs, return_loss_dict=True)
# Compute Gradients for Back Propagation
loss.backward()
# Update Weights
optimizer.step()
log.log_minibatch(loss_dict)
log.log_epoch({"Learning Rate": optimizer.param_groups[0]["lr"]})
scheduler.step()
with LaunchLogger("valid", epoch=epoch) as log:
# Val loop
model.eval()
plot_count = 0
with torch.no_grad():
for i, (inputs, outputs) in enumerate(dataloader_val):
inputs = inputs.type(dtype).to(dist.device)
outputs = outputs.type(dtype).to(dist.device)
# Compute Predictions
pred = (
model((inputs / input_norm).permute(0, 4, 1, 2, 3)).permute(
0, 2, 3, 4, 1
)
* output_norm
)
# Compute Loss
loss, loss_dict = mhd_loss(
pred, outputs, inputs, return_loss_dict=True
)
log.log_minibatch(loss_dict)
# Get prediction plots to log
# Do for number of batches specified in the config file
if (i < log_params["log_num_plots"]) and (
epoch % log_params["log_plot_freq"] == 0
):
# Add all predictions in batch
for j, _ in enumerate(pred):
# Make plots for each field
for index, name in enumerate(names):
# Generate figure
_ = plot_predictions_mhd_plotly(
pred[j].cpu(),
outputs[j].cpu(),
inputs[j].cpu(),
index=index,
name=name,
)
plot_count += 1
# Get prediction plots and save images locally
if (i < 2) and (epoch % log_params["log_plot_freq"] == 0):
# Add all predictions in batch
for j, _ in enumerate(pred):
# Generate figure
plot_predictions_mhd(
pred[j].cpu(),
outputs[j].cpu(),
inputs[j].cpu(),
names=names,
save_path=os.path.join(
output_dir,
"MHD_physicsnemo" + "_" + str(dist.rank),
),
save_suffix=i,
)
if epoch % ckpt_freq == 0 and dist.rank == 0:
save_checkpoint(ckpt_path, model, optimizer, scheduler, epoch=epoch)
if __name__ == "__main__":
main()