L0SG commited on
Commit
8fd0bf2
·
1 Parent(s): 6d8c66f

update urls

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -216,7 +216,7 @@ css = """
216
 
217
  ######################## script for loading the models ########################
218
 
219
- model_path = "L0SG/BigVGAN"
220
 
221
  list_model_name = [
222
  "bigvgan_24khz_100band",
@@ -301,7 +301,7 @@ with iface:
301
  <li>Custom CUDA kernel for inference: we provide a fused upsampling + activation kernel written in CUDA for accelerated inference speed. Our test shows 1.5 - 3x faster speed on a single A100 GPU.</li>
302
  <li>Improved discriminator and loss: BigVGAN-v2 is trained using a <a href="https://arxiv.org/abs/2311.14957" target="_blank">multi-scale sub-band CQT discriminator</a> and a <a href="https://arxiv.org/abs/2306.06546" target="_blank">multi-scale mel spectrogram loss</a>.</li>
303
  <li>Larger training data: BigVGAN-v2 is trained using datasets containing diverse audio types, including speech in multiple languages, environmental sounds, and instruments.</li>
304
- <li>We provide <a href="https://huggingface.co/L0SG/BigVGAN" target="_blank">pretrained checkpoints</a> of BigVGAN-v2 using diverse audio configurations, supporting up to 44 kHz sampling rate and 512x upsampling ratio.</li>
305
  </ul>
306
  </div>
307
  """
 
216
 
217
  ######################## script for loading the models ########################
218
 
219
+ model_path = "nvidia/BigVGAN"
220
 
221
  list_model_name = [
222
  "bigvgan_24khz_100band",
 
301
  <li>Custom CUDA kernel for inference: we provide a fused upsampling + activation kernel written in CUDA for accelerated inference speed. Our test shows 1.5 - 3x faster speed on a single A100 GPU.</li>
302
  <li>Improved discriminator and loss: BigVGAN-v2 is trained using a <a href="https://arxiv.org/abs/2311.14957" target="_blank">multi-scale sub-band CQT discriminator</a> and a <a href="https://arxiv.org/abs/2306.06546" target="_blank">multi-scale mel spectrogram loss</a>.</li>
303
  <li>Larger training data: BigVGAN-v2 is trained using datasets containing diverse audio types, including speech in multiple languages, environmental sounds, and instruments.</li>
304
+ <li>We provide <a href="https://huggingface.co/nvidia/BigVGAN" target="_blank">pretrained checkpoints</a> of BigVGAN-v2 using diverse audio configurations, supporting up to 44 kHz sampling rate and 512x upsampling ratio.</li>
305
  </ul>
306
  </div>
307
  """