phewwww
Browse files- app.py +33 -6
- components/generators/detailed_explainer.py +191 -0
- routes/api/descriptive.py +95 -0
app.py
CHANGED
|
@@ -1,8 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
-
from routes.api import ingest, query, headlines
|
| 3 |
-
from llama_index.core.settings import Settings
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
app = FastAPI()
|
|
@@ -11,6 +36,8 @@ app = FastAPI()
|
|
| 11 |
def greet():
|
| 12 |
return {"welcome": "nuse ai"}
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
app.include_router(
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
from fastapi import FastAPI
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# --- Crucial for finding your modules ---
|
| 7 |
+
# Assuming app.py is at the project root level.
|
| 8 |
+
# This ensures Python can find 'components' and 'routes' as packages.
|
| 9 |
+
sys.path.insert(0, os.path.abspath(os.path.dirname(__file__)))
|
| 10 |
+
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "components")))
|
| 11 |
+
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "routes"))) # Add the routes directory
|
| 12 |
+
# Add routes/api to path if you are doing 'from routes.api import module' directly
|
| 13 |
+
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "routes", "api")))
|
| 14 |
+
|
| 15 |
+
# Import your routers
|
| 16 |
+
# These imports expect routes/api/ingest.py, routes/api/query.py, routes/api/headlines.py to exist
|
| 17 |
+
from routes.api import ingest as ingest_router_module
|
| 18 |
+
from routes.api import query as query_router_module # Assuming this exists
|
| 19 |
+
from routes.api import headlines as headlines_router_module
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# NOTE: Settings.llm = None
|
| 23 |
+
# This line is problematic if LlamaIndex components in your pipeline (like query engine)
|
| 24 |
+
# rely on a global LLM setting. If you intend to use an LLM with LlamaIndex features,
|
| 25 |
+
# you would set it here, e.g., `Settings.llm = OpenAI()`
|
| 26 |
+
# For this current pipeline, the OpenAI client is initialized explicitly within
|
| 27 |
+
# daily_feed.py and detailed_explainer.py, so setting Settings.llm here is not strictly needed
|
| 28 |
+
# but also not harmful if it's just meant as a placeholder for a different use case.
|
| 29 |
+
# I will leave it commented out as per your original request, but be aware of its implications.
|
| 30 |
+
# Settings.llm = None
|
| 31 |
|
| 32 |
|
| 33 |
app = FastAPI()
|
|
|
|
| 36 |
def greet():
|
| 37 |
return {"welcome": "nuse ai"}
|
| 38 |
|
| 39 |
+
# Include your routers
|
| 40 |
+
# Use .router to access the APIRouter instance from the imported modules
|
| 41 |
+
app.include_router(ingest_router_module.router, prefix="/api/ingest")
|
| 42 |
+
app.include_router(query_router_module.router, prefix="/api/query") # Assuming query.py exists
|
| 43 |
+
app.include_router(headlines_router_module.router, prefix="/api/headlines")
|
components/generators/detailed_explainer.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import numpy as np
|
| 4 |
+
import redis
|
| 5 |
+
from typing import List, Dict, Any, Optional, Set
|
| 6 |
+
from openai import OpenAI
|
| 7 |
+
from llama_index.core.vector_stores.types import VectorStoreQuery, MetadataFilter, MetadataFilters, FilterOperator
|
| 8 |
+
from llama_index.core.schema import TextNode
|
| 9 |
+
from components.indexers.news_indexer import get_upstash_vector_store
|
| 10 |
+
import logging
|
| 11 |
+
|
| 12 |
+
from llama_index.core.settings import Settings
|
| 13 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 14 |
+
|
| 15 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 16 |
+
|
| 17 |
+
# 🔐 Environment variables for this module
|
| 18 |
+
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
| 19 |
+
REDIS_URL = os.environ.get("UPSTASH_REDIS_URL", "redis://localhost:6379")
|
| 20 |
+
|
| 21 |
+
# ✅ Redis client for this module
|
| 22 |
+
try:
|
| 23 |
+
detailed_explainer_redis_client = redis.Redis.from_url(REDIS_URL, decode_responses=True)
|
| 24 |
+
detailed_explainer_redis_client.ping()
|
| 25 |
+
logging.info("Redis client initialized for detailed_explainer.py.")
|
| 26 |
+
except Exception as e:
|
| 27 |
+
logging.critical(f"❌ FATAL ERROR: Could not connect to Redis in detailed_explainer.py: {e}")
|
| 28 |
+
raise
|
| 29 |
+
|
| 30 |
+
# Cache Key specific to detailed explanations
|
| 31 |
+
DETAILED_FEED_CACHE_KEY = "detailed_news_feed_cache"
|
| 32 |
+
|
| 33 |
+
# Ensure Settings.embed_model is configured globally.
|
| 34 |
+
try:
|
| 35 |
+
if not hasattr(Settings, 'embed_model') or Settings.embed_model is None:
|
| 36 |
+
logging.info("Settings.embed_model not yet configured, initializing with default HuggingFaceEmbedding.")
|
| 37 |
+
Settings.embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/paraphrase-MiniLM-L3-v2")
|
| 38 |
+
except Exception as e:
|
| 39 |
+
logging.error(f"Failed to initialize Settings.embed_model in detailed_explainer: {e}")
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# LLM prompt for detailed explanation
|
| 43 |
+
EXPLAINER_PROMPT = (
|
| 44 |
+
"You are an expert news analyst. Based on the following article content, "
|
| 45 |
+
"generate a concise, detailed explanation (50-60 words) for the headline provided. "
|
| 46 |
+
"Focus on the 'why it matters' and key context. Do not include any introductory phrases, just the explanation itself."
|
| 47 |
+
"\n\nHeadline: {headline}"
|
| 48 |
+
"\n\nArticle Content:\n{article_content}"
|
| 49 |
+
"\n\nDetailed Explanation (50-60 words):"
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
async def get_detailed_explanation_from_vector(
|
| 53 |
+
summary_item: Dict[str, Any],
|
| 54 |
+
vector_store_client: Any
|
| 55 |
+
) -> Dict[str, Any]:
|
| 56 |
+
"""
|
| 57 |
+
Takes a summary item, queries the vector store for its original article content,
|
| 58 |
+
and generates a detailed explanation using an LLM.
|
| 59 |
+
"""
|
| 60 |
+
headline_text = summary_item["summary"]
|
| 61 |
+
representative_article_link = summary_item["article_link"]
|
| 62 |
+
representative_title = summary_item["representative_title"]
|
| 63 |
+
|
| 64 |
+
detailed_content = ""
|
| 65 |
+
sources_found: Set[str] = set()
|
| 66 |
+
|
| 67 |
+
logging.info(f"Retrieving detailed content for headline: '{headline_text}' (from {representative_article_link})")
|
| 68 |
+
|
| 69 |
+
try:
|
| 70 |
+
query_text = f"{representative_title} {representative_article_link}" if representative_title else representative_article_link
|
| 71 |
+
|
| 72 |
+
query_embedding = Settings.embed_model.embed_query(query_text)
|
| 73 |
+
|
| 74 |
+
filters = MetadataFilters(
|
| 75 |
+
filters=[MetadataFilter(key="url", value=representative_article_link, operator=FilterOperator.EQ)]
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
query = VectorStoreQuery(
|
| 79 |
+
query_embedding=query_embedding,
|
| 80 |
+
similarity_top_k=5,
|
| 81 |
+
filters=filters
|
| 82 |
+
)
|
| 83 |
+
result = vector_store_client.query(query)
|
| 84 |
+
|
| 85 |
+
if result.nodes:
|
| 86 |
+
for node in result.nodes:
|
| 87 |
+
node_content = node.get_content().strip()
|
| 88 |
+
if node_content:
|
| 89 |
+
detailed_content += node_content + "\n\n"
|
| 90 |
+
if "source" in node.metadata:
|
| 91 |
+
sources_found.add(node.metadata["source"])
|
| 92 |
+
|
| 93 |
+
if not detailed_content:
|
| 94 |
+
logging.warning(f"No usable content found in nodes retrieved for URL: {representative_article_link}. Falling back to title+url context.")
|
| 95 |
+
detailed_content = representative_title + " " + representative_article_link
|
| 96 |
+
|
| 97 |
+
else:
|
| 98 |
+
logging.warning(f"No original article found in vector store for URL: {representative_article_link}. Using summary as context.")
|
| 99 |
+
detailed_content = summary_item["summary"] + ". " + summary_item.get("explanation", "")
|
| 100 |
+
|
| 101 |
+
except Exception as e:
|
| 102 |
+
logging.error(f"❌ Error querying vector store for detailed content for '{representative_article_link}': {e}", exc_info=True)
|
| 103 |
+
detailed_content = summary_item["summary"] + ". " + summary_item.get("explanation", "")
|
| 104 |
+
|
| 105 |
+
# Generate detailed explanation using LLM
|
| 106 |
+
detailed_explanation_text = ""
|
| 107 |
+
try:
|
| 108 |
+
client = OpenAI(api_key=OPENAI_API_KEY)
|
| 109 |
+
if not OPENAI_API_KEY:
|
| 110 |
+
raise ValueError("OPENAI_API_KEY is not set.")
|
| 111 |
+
|
| 112 |
+
llm_response = client.chat.completions.create(
|
| 113 |
+
model="gpt-4o",
|
| 114 |
+
messages=[
|
| 115 |
+
{"role": "system", "content": "You are a concise and informative news explainer."},
|
| 116 |
+
{"role": "user", "content": EXPLAINER_PROMPT.format(
|
| 117 |
+
headline=headline_text,
|
| 118 |
+
article_content=detailed_content
|
| 119 |
+
)},
|
| 120 |
+
],
|
| 121 |
+
max_tokens=100,
|
| 122 |
+
temperature=0.4,
|
| 123 |
+
)
|
| 124 |
+
detailed_explanation_text = llm_response.choices[0].message.content.strip()
|
| 125 |
+
logging.info(f"Generated detailed explanation for '{headline_text}'.")
|
| 126 |
+
|
| 127 |
+
except Exception as e:
|
| 128 |
+
logging.error(f"❌ Error generating detailed explanation for '{headline_text}': {e}", exc_info=True)
|
| 129 |
+
detailed_explanation_text = summary_item.get("explanation", "Could not generate a detailed explanation.")
|
| 130 |
+
|
| 131 |
+
return {
|
| 132 |
+
"title": headline_text,
|
| 133 |
+
"description": detailed_explanation_text,
|
| 134 |
+
"sources": list(sources_found) if sources_found else ["General News Sources"]
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
async def generate_detailed_feed(
|
| 138 |
+
cached_feed: Dict[str, Dict[int, Dict[str, Any]]]
|
| 139 |
+
) -> Dict[str, Dict[int, Dict[str, Any]]]:
|
| 140 |
+
"""
|
| 141 |
+
Generates detailed explanations for each summary in the cached feed.
|
| 142 |
+
Does NOT cache the result internally. The caller is responsible for caching.
|
| 143 |
+
"""
|
| 144 |
+
if not cached_feed:
|
| 145 |
+
logging.info("No cached feed found to generate detailed explanations from.")
|
| 146 |
+
return {}
|
| 147 |
+
|
| 148 |
+
detailed_feed_structured: Dict[str, Dict[int, Dict[str, Any]]] = {}
|
| 149 |
+
vector_store = get_upstash_vector_store()
|
| 150 |
+
|
| 151 |
+
for topic_key, summaries_map in cached_feed.items():
|
| 152 |
+
logging.info(f"Processing detailed explanations for topic: {topic_key}")
|
| 153 |
+
detailed_summaries_for_topic: Dict[int, Dict[str, Any]] = {}
|
| 154 |
+
|
| 155 |
+
for summary_id in sorted(summaries_map.keys()):
|
| 156 |
+
summary_item = summaries_map[summary_id]
|
| 157 |
+
|
| 158 |
+
detailed_item = await get_detailed_explanation_from_vector(summary_item, vector_store)
|
| 159 |
+
|
| 160 |
+
detailed_summaries_for_topic[summary_id] = detailed_item
|
| 161 |
+
|
| 162 |
+
detailed_feed_structured[topic_key] = detailed_summaries_for_topic
|
| 163 |
+
|
| 164 |
+
logging.info("✅ Detailed explanation generation complete.")
|
| 165 |
+
return detailed_feed_structured
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def cache_detailed_feed(feed_data: Dict[str, Dict[int, Dict[str, Any]]]):
|
| 169 |
+
"""Caches the given detailed feed data to Redis using its dedicated client."""
|
| 170 |
+
try:
|
| 171 |
+
detailed_explainer_redis_client.set(DETAILED_FEED_CACHE_KEY, json.dumps(feed_data, ensure_ascii=False))
|
| 172 |
+
detailed_explainer_redis_client.expire(DETAILED_FEED_CACHE_KEY, 86400)
|
| 173 |
+
logging.info(f"✅ Detailed feed cached under key '{DETAILED_FEED_CACHE_KEY}' with 24-hour expiry.")
|
| 174 |
+
except Exception as e:
|
| 175 |
+
logging.error(f"❌ [Redis detailed feed caching error]: {e}", exc_info=True)
|
| 176 |
+
raise
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def get_cached_detailed_feed() -> Dict[str, Dict[int, Dict[str, Any]]]:
|
| 180 |
+
"""Retrieves the cached detailed feed from Redis using its dedicated client."""
|
| 181 |
+
try:
|
| 182 |
+
cached_raw = detailed_explainer_redis_client.get(DETAILED_FEED_CACHE_KEY)
|
| 183 |
+
if cached_raw:
|
| 184 |
+
logging.info(f"✅ Retrieved cached detailed feed from '{DETAILED_FEED_CACHE_KEY}'.")
|
| 185 |
+
return json.loads(cached_raw)
|
| 186 |
+
else:
|
| 187 |
+
logging.info(f"ℹ️ No cached detailed feed found under key '{DETAILED_FEED_CACHE_KEY}'.")
|
| 188 |
+
return {}
|
| 189 |
+
except Exception as e:
|
| 190 |
+
logging.error(f"❌ [Redis detailed feed retrieval error]: {e}", exc_info=True)
|
| 191 |
+
return {}
|
routes/api/descriptive.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# routes/api/headlines.py
|
| 2 |
+
from fastapi import APIRouter, HTTPException, status
|
| 3 |
+
import logging
|
| 4 |
+
from typing import Dict, Any
|
| 5 |
+
|
| 6 |
+
# Import functions directly from the now standalone detailed_explainer
|
| 7 |
+
# Ensure sys.path in app.py allows these imports to components/generators
|
| 8 |
+
from components.generators.detailed_explainer import (
|
| 9 |
+
generate_detailed_feed,
|
| 10 |
+
cache_detailed_feed,
|
| 11 |
+
get_cached_detailed_feed
|
| 12 |
+
)
|
| 13 |
+
# We also need to get the initial summaries, which are managed by daily_feed.py
|
| 14 |
+
from components.generators.daily_feed import get_cached_daily_feed
|
| 15 |
+
|
| 16 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 17 |
+
|
| 18 |
+
router = APIRouter()
|
| 19 |
+
|
| 20 |
+
@router.post("/generate-detailed") # Endpoint for triggering detailed generation
|
| 21 |
+
async def generate_detailed_headlines_endpoint() -> Dict[str, Any]:
|
| 22 |
+
"""
|
| 23 |
+
Generates detailed explanations for the latest cached summaries.
|
| 24 |
+
This step requires initial summaries to be present in Redis cache (from daily_feed.py).
|
| 25 |
+
The final detailed feed is then cached by this endpoint using its dedicated key.
|
| 26 |
+
"""
|
| 27 |
+
logging.info("API Call: POST /api/headlines/generate-detailed initiated.")
|
| 28 |
+
try:
|
| 29 |
+
# Step 1: Retrieve the cached initial summaries
|
| 30 |
+
initial_summaries = get_cached_daily_feed() # This gets data from "initial_news_summary_cache"
|
| 31 |
+
|
| 32 |
+
if not initial_summaries:
|
| 33 |
+
logging.warning("No initial summaries found in cache to generate detailed explanations from.")
|
| 34 |
+
raise HTTPException(
|
| 35 |
+
status_code=status.HTTP_404_NOT_FOUND,
|
| 36 |
+
detail="No initial news summaries found in cache. Please run the ingestion/summarization process first (e.g., /api/ingest/run)."
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Step 2: Generate detailed explanations (this is an async call to detailed_explainer)
|
| 40 |
+
detailed_feed = await generate_detailed_feed(initial_summaries)
|
| 41 |
+
|
| 42 |
+
if not detailed_feed:
|
| 43 |
+
raise HTTPException(
|
| 44 |
+
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
| 45 |
+
detail="Failed to generate detailed explanations. Check server logs for errors during LLM calls or content retrieval."
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# Step 3: Cache the final detailed feed using the function from detailed_explainer
|
| 49 |
+
# This function (cache_detailed_feed) internally uses its own Redis client and DETAILED_FEED_CACHE_KEY
|
| 50 |
+
cache_detailed_feed(detailed_feed)
|
| 51 |
+
|
| 52 |
+
logging.info("API Call: POST /api/headlines/generate-detailed completed successfully.")
|
| 53 |
+
|
| 54 |
+
total_items = sum(len(topic_summaries) for topic_summaries in detailed_feed.values())
|
| 55 |
+
|
| 56 |
+
return {"status": "success", "message": "Detailed headlines generated and cached.", "items": total_items}
|
| 57 |
+
|
| 58 |
+
except HTTPException as he:
|
| 59 |
+
raise he # Re-raise FastAPI's HTTPExceptions
|
| 60 |
+
except Exception as e:
|
| 61 |
+
logging.error(f"Error in /api/headlines/generate-detailed: {e}", exc_info=True)
|
| 62 |
+
raise HTTPException(
|
| 63 |
+
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
| 64 |
+
detail=f"An unexpected error occurred during detailed feed generation: {e}"
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
@router.get("/get-detailed") # Endpoint for retrieving detailed headlines
|
| 68 |
+
async def get_detailed_headlines_endpoint() -> Dict[str, Dict[int, Dict[str, Any]]]:
|
| 69 |
+
"""
|
| 70 |
+
Retrieves the most recently cached *fully detailed* news feed.
|
| 71 |
+
Returns 404 if no detailed feed is found in cache.
|
| 72 |
+
"""
|
| 73 |
+
logging.info("API Call: GET /api/headlines/get-detailed initiated.")
|
| 74 |
+
try:
|
| 75 |
+
# Retrieve the cached detailed feed using the function from detailed_explainer
|
| 76 |
+
cached_detailed_feed = get_cached_detailed_feed()
|
| 77 |
+
|
| 78 |
+
if not cached_detailed_feed:
|
| 79 |
+
logging.info("No full detailed news feed found in cache.")
|
| 80 |
+
raise HTTPException(
|
| 81 |
+
status_code=status.HTTP_404_NOT_FOUND,
|
| 82 |
+
detail="No detailed news feed found in cache. Please run /api/headlines/generate-detailed first."
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
logging.info("API Call: GET /api/headlines/get-detailed completed successfully.")
|
| 86 |
+
return cached_detailed_feed
|
| 87 |
+
|
| 88 |
+
except HTTPException as he:
|
| 89 |
+
raise he
|
| 90 |
+
except Exception as e:
|
| 91 |
+
logging.error(f"Error in /api/headlines/get-detailed: {e}", exc_info=True)
|
| 92 |
+
raise HTTPException(
|
| 93 |
+
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
| 94 |
+
detail=f"An unexpected error occurred while retrieving cached detailed feed: {e}"
|
| 95 |
+
)
|