FastAPI / question.py
raghavNCI
changes v7
d229ca3
raw
history blame
2.85 kB
# app/routes/question.py
import os
import requests
from fastapi import APIRouter
from pydantic import BaseModel
from typing import List
from redis_client import redis_client as r
from dotenv import load_dotenv
from urllib.parse import quote_plus
import re
import json
load_dotenv()
GNEWS_API_KEY = os.getenv("GNEWS_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
askMe = APIRouter()
class QuestionInput(BaseModel):
question: str
@askMe.post("/ask")
async def ask_question(input: QuestionInput):
question = input.question
# Basic keyword extraction with stopword filtering
STOPWORDS = {"what", "about", "which", "would", "could", "this", "that"}
keywords = [
kw for kw in re.findall(r"\b\w{4,}\b", question.lower())
if kw not in STOPWORDS
]
query_string = " AND ".join(f'"{kw}"' for kw in keywords[:7])
encoded_query = quote_plus(query_string)
print("Query string", query_string)
gnews_url = f"https://gnews.io/api/v4/search?q={query_string}&lang=en&max=3&expand=content&token={GNEWS_API_KEY}"
print("GNEWS URL", gnews_url)
try:
response = requests.get(gnews_url, timeout=10)
response.raise_for_status()
articles = response.json().get("articles", [])
except Exception as e:
return {"error": f"GNews API error: {str(e)}"}
print("the articles are", articles)
context = "\n\n".join([
article.get("content") or article.get("description") or ""
for article in articles
])[:1500]
if not context.strip():
return {
"question": question,
"answer": "Cannot answer – no relevant context found.",
"sources": []
}
# Call HF Inference API manually
hf_api_url = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
headers = {
"Authorization": f"Bearer {HF_TOKEN}",
"Content-Type": "application/json"
}
payload = {
"inputs": {
"past_user_inputs": [],
"generated_responses": [],
"text": f"You are an assistant that answers questions based on recent news.\n\nContext:\n{context}\n\nQuestion: {question}"
},
"parameters": {
"max_new_tokens": 256,
"temperature": 0.7
}
}
try:
response = requests.post(hf_api_url, headers=headers, data=json.dumps(payload), timeout=30)
response.raise_for_status()
hf_response = response.json()
answer = hf_response.get("generated_text", "Cannot answer.")
except Exception as e:
return {"error": f"Hugging Face API error: {str(e)}"}
return {
"question": question,
"answer": answer.strip(),
"sources": [
{"title": a["title"], "url": a["url"]}
for a in articles
]
}