nursakinahbadriah
commited on
Commit
•
8247efc
1
Parent(s):
28b9906
Upload 8 files
Browse files- P1G5_Set_1_badriah_nursakinah.ipynb +0 -0
- P1G5_Set_1_badriah_nursakinah_inference.ipynb +224 -0
- data_inf +2 -0
P1G5_Set_1_badriah_nursakinah.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
P1G5_Set_1_badriah_nursakinah_inference.ipynb
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"## Import Library"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 5,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"#Import library\n",
|
17 |
+
"\n",
|
18 |
+
"import pandas as pd\n",
|
19 |
+
"import numpy as np\n",
|
20 |
+
"import pickle\n",
|
21 |
+
"import json\n",
|
22 |
+
"import warnings\n",
|
23 |
+
"from sklearn.preprocessing import StandardScaler, OneHotEncoder # Assuming these scalers/encoders are needed\n",
|
24 |
+
"import pandas as pd\n",
|
25 |
+
"import numpy as np\n",
|
26 |
+
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
|
27 |
+
"from sklearn.pipeline import make_pipeline, Pipeline\n",
|
28 |
+
"\n"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "markdown",
|
33 |
+
"metadata": {},
|
34 |
+
"source": [
|
35 |
+
"## Load Data Files"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": 6,
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"with open('best_svm_model.pkl', 'rb') as file_1:\n",
|
45 |
+
" list_cat_cols = pickle.load(file_1)"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "markdown",
|
50 |
+
"metadata": {},
|
51 |
+
"source": [
|
52 |
+
"## Load Data Yang Sudah Dibuat Untuk Random State Data Inference"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": 7,
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [
|
60 |
+
{
|
61 |
+
"data": {
|
62 |
+
"text/html": [
|
63 |
+
"<div>\n",
|
64 |
+
"<style scoped>\n",
|
65 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
66 |
+
" vertical-align: middle;\n",
|
67 |
+
" }\n",
|
68 |
+
"\n",
|
69 |
+
" .dataframe tbody tr th {\n",
|
70 |
+
" vertical-align: top;\n",
|
71 |
+
" }\n",
|
72 |
+
"\n",
|
73 |
+
" .dataframe thead th {\n",
|
74 |
+
" text-align: right;\n",
|
75 |
+
" }\n",
|
76 |
+
"</style>\n",
|
77 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
78 |
+
" <thead>\n",
|
79 |
+
" <tr style=\"text-align: right;\">\n",
|
80 |
+
" <th></th>\n",
|
81 |
+
" <th>Unnamed: 0</th>\n",
|
82 |
+
" <th>limit_balance</th>\n",
|
83 |
+
" <th>sex</th>\n",
|
84 |
+
" <th>education_level</th>\n",
|
85 |
+
" <th>marital_status</th>\n",
|
86 |
+
" <th>age</th>\n",
|
87 |
+
" <th>pay_1</th>\n",
|
88 |
+
" <th>pay_2</th>\n",
|
89 |
+
" <th>pay_3</th>\n",
|
90 |
+
" <th>pay_4</th>\n",
|
91 |
+
" <th>...</th>\n",
|
92 |
+
" <th>bill_amt_5</th>\n",
|
93 |
+
" <th>bill_amt_6</th>\n",
|
94 |
+
" <th>pay_amt_1</th>\n",
|
95 |
+
" <th>pay_amt_2</th>\n",
|
96 |
+
" <th>pay_amt_3</th>\n",
|
97 |
+
" <th>pay_amt_4</th>\n",
|
98 |
+
" <th>pay_amt_5</th>\n",
|
99 |
+
" <th>pay_amt_6</th>\n",
|
100 |
+
" <th>default_payment_next_month</th>\n",
|
101 |
+
" <th>Klasifikasi</th>\n",
|
102 |
+
" </tr>\n",
|
103 |
+
" </thead>\n",
|
104 |
+
" <tbody>\n",
|
105 |
+
" <tr>\n",
|
106 |
+
" <th>0</th>\n",
|
107 |
+
" <td>0</td>\n",
|
108 |
+
" <td>240000.0</td>\n",
|
109 |
+
" <td>2</td>\n",
|
110 |
+
" <td>2</td>\n",
|
111 |
+
" <td>1</td>\n",
|
112 |
+
" <td>41.0</td>\n",
|
113 |
+
" <td>1.0</td>\n",
|
114 |
+
" <td>-1.0</td>\n",
|
115 |
+
" <td>-1.0</td>\n",
|
116 |
+
" <td>-1.0</td>\n",
|
117 |
+
" <td>...</td>\n",
|
118 |
+
" <td>11756.0</td>\n",
|
119 |
+
" <td>12522.0</td>\n",
|
120 |
+
" <td>40529.0</td>\n",
|
121 |
+
" <td>3211.0</td>\n",
|
122 |
+
" <td>9795.0</td>\n",
|
123 |
+
" <td>11756.0</td>\n",
|
124 |
+
" <td>12522.0</td>\n",
|
125 |
+
" <td>6199.0</td>\n",
|
126 |
+
" <td>0</td>\n",
|
127 |
+
" <td>Dewasa</td>\n",
|
128 |
+
" </tr>\n",
|
129 |
+
" </tbody>\n",
|
130 |
+
"</table>\n",
|
131 |
+
"<p>1 rows × 26 columns</p>\n",
|
132 |
+
"</div>"
|
133 |
+
],
|
134 |
+
"text/plain": [
|
135 |
+
" Unnamed: 0 limit_balance sex education_level marital_status age \\\n",
|
136 |
+
"0 0 240000.0 2 2 1 41.0 \n",
|
137 |
+
"\n",
|
138 |
+
" pay_1 pay_2 pay_3 pay_4 ... bill_amt_5 bill_amt_6 pay_amt_1 \\\n",
|
139 |
+
"0 1.0 -1.0 -1.0 -1.0 ... 11756.0 12522.0 40529.0 \n",
|
140 |
+
"\n",
|
141 |
+
" pay_amt_2 pay_amt_3 pay_amt_4 pay_amt_5 pay_amt_6 \\\n",
|
142 |
+
"0 3211.0 9795.0 11756.0 12522.0 6199.0 \n",
|
143 |
+
"\n",
|
144 |
+
" default_payment_next_month Klasifikasi \n",
|
145 |
+
"0 0 Dewasa \n",
|
146 |
+
"\n",
|
147 |
+
"[1 rows x 26 columns]"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
"execution_count": 7,
|
151 |
+
"metadata": {},
|
152 |
+
"output_type": "execute_result"
|
153 |
+
}
|
154 |
+
],
|
155 |
+
"source": [
|
156 |
+
"#Create new data\n",
|
157 |
+
"data_inf = pd.read_csv('data_inf')\n",
|
158 |
+
"data_inf"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "markdown",
|
163 |
+
"metadata": {},
|
164 |
+
"source": [
|
165 |
+
"\n",
|
166 |
+
"## Load Data Yang Sudah Dibuat Untuk Random State Data Inference"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "code",
|
171 |
+
"execution_count": 8,
|
172 |
+
"metadata": {},
|
173 |
+
"outputs": [
|
174 |
+
{
|
175 |
+
"name": "stdout",
|
176 |
+
"output_type": "stream",
|
177 |
+
"text": [
|
178 |
+
"default_prediction: 0\n"
|
179 |
+
]
|
180 |
+
}
|
181 |
+
],
|
182 |
+
"source": [
|
183 |
+
"y_pred_inf = list_cat_cols.predict(data_inf)\n",
|
184 |
+
"\n",
|
185 |
+
"print('default_prediction:', (y_pred_inf[0]))"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"cell_type": "markdown",
|
190 |
+
"metadata": {},
|
191 |
+
"source": [
|
192 |
+
"## Kesimpulan"
|
193 |
+
]
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"cell_type": "markdown",
|
197 |
+
"metadata": {},
|
198 |
+
"source": [
|
199 |
+
"Dari hasil inferenece dengan nilai 0 Jika di tarik kesimpulan dan ditinjau pada studi kasus dalam memprediksi `default_payment_next_month` maka dapat dikatakan bahwa `tidak ada kemungkinan` terjadi telat pembayaran di bulan berikutnya "
|
200 |
+
]
|
201 |
+
}
|
202 |
+
],
|
203 |
+
"metadata": {
|
204 |
+
"kernelspec": {
|
205 |
+
"display_name": "base",
|
206 |
+
"language": "python",
|
207 |
+
"name": "python3"
|
208 |
+
},
|
209 |
+
"language_info": {
|
210 |
+
"codemirror_mode": {
|
211 |
+
"name": "ipython",
|
212 |
+
"version": 3
|
213 |
+
},
|
214 |
+
"file_extension": ".py",
|
215 |
+
"mimetype": "text/x-python",
|
216 |
+
"name": "python",
|
217 |
+
"nbconvert_exporter": "python",
|
218 |
+
"pygments_lexer": "ipython3",
|
219 |
+
"version": "3.10.13"
|
220 |
+
}
|
221 |
+
},
|
222 |
+
"nbformat": 4,
|
223 |
+
"nbformat_minor": 2
|
224 |
+
}
|
data_inf
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,limit_balance,sex,education_level,marital_status,age,pay_1,pay_2,pay_3,pay_4,pay_5,pay_6,bill_amt_1,bill_amt_2,bill_amt_3,bill_amt_4,bill_amt_5,bill_amt_6,pay_amt_1,pay_amt_2,pay_amt_3,pay_amt_4,pay_amt_5,pay_amt_6,default_payment_next_month,Klasifikasi
|
2 |
+
0,240000.0,2,2,1,41.0,1.0,-1.0,-1.0,-1.0,-1,-1,0.0,40529.0,3211.0,9795.0,11756.0,12522.0,40529.0,3211.0,9795.0,11756.0,12522.0,6199.0,0,Dewasa
|