|
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList
|
|
import torch
|
|
import json
|
|
import json
|
|
import re
|
|
import numpy as np
|
|
|
|
|
|
def create_prompt(text, template, examples):
|
|
template = json.dumps(json.loads(template),indent = 4)
|
|
|
|
prompt = "<|input|>\n### Template:\n"+template+"\n"
|
|
|
|
if examples[0]:
|
|
example1 = json.dumps(json.loads(examples[0]),indent = 4)
|
|
prompt+= "### Example:\n"+example1+"\n"
|
|
if examples[1]:
|
|
example2 = json.dumps(json.loads(examples[1]),indent = 4)
|
|
prompt+= "### Example:\n"+example1+"\n"
|
|
if examples[2]:
|
|
example3 = json.dumps(json.loads(examples[1]),indent = 4)
|
|
prompt+= "### Example:\n"+example3+"\n"
|
|
|
|
prompt += "### Text:\n"+text+'''\n<|output|>'''
|
|
|
|
return prompt
|
|
|
|
|
|
def generate_answer_short(prompt,model, tokenizer):
|
|
model_input = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=3000).to("cuda")
|
|
with torch.no_grad():
|
|
gen = tokenizer.decode(model.generate(**model_input, max_new_tokens=1500)[0], skip_special_tokens=True)
|
|
print(gen.split("<|output|>")[1].split("<|end-output|>")[0])
|
|
return gen.split("<|output|>")[1].split("<|end-output|>")[0]
|
|
|