Spaces:
Sleeping
Sleeping
add diffusion utils
Browse files- README.md +15 -1
- app.py +1 -1
- diffusion.py +46 -0
- diffusion_utils.py +90 -0
- gaussian_diffusion.py +917 -0
- respace.py +127 -0
- timestep_sampler.py +150 -0
- uv.lock +53 -37
README.md
CHANGED
@@ -5,10 +5,24 @@ colorFrom: red
|
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.9.1
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
|
|
|
|
|
|
11 |
short_description: A simple diffusion-based text to speech model
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.9.1
|
8 |
+
python_version: 3.11
|
9 |
app_file: app.py
|
10 |
pinned: false
|
11 |
license: mit
|
12 |
+
models:
|
13 |
+
- ntt123/diffusion-speech-360h
|
14 |
+
preload_from_hub: true
|
15 |
+
- ntt123/diffusion-speech-360h acoustic_model_0140000.pt,duration_model_0120000.pt
|
16 |
short_description: A simple diffusion-based text to speech model
|
17 |
---
|
18 |
|
19 |
+
```
|
20 |
+
uv run synthesize.py \
|
21 |
+
--duration-model-config ./train_duration_dit_s.yaml \
|
22 |
+
--acoustic-model-config ./train_acoustic_dit_b.yaml \
|
23 |
+
--duration-model-checkpoint ./duration_model_0120000.pt \
|
24 |
+
--acoustic-model-checkpoint ./acoustic_model_0140000.pt \
|
25 |
+
--speaker-id 1914 \
|
26 |
+
--output-file ./audio.wav \
|
27 |
+
--text "Ilya has made several major contributions to the field of deep learning."
|
28 |
+
```
|
app.py
CHANGED
@@ -24,7 +24,7 @@ sampling_steps = [100, 250, 500, 1000]
|
|
24 |
demo = gr.Interface(
|
25 |
fn=text_to_speech,
|
26 |
inputs=[
|
27 |
-
gr.Textbox(label="Text"),
|
28 |
gr.Dropdown(choices=speaker_ids, label="Speaker ID", value="0"),
|
29 |
gr.Slider(minimum=0, maximum=10, value=4.0, label="CFG Scale"),
|
30 |
gr.Dropdown(choices=sampling_steps, label="Sampling Steps", value=100),
|
|
|
24 |
demo = gr.Interface(
|
25 |
fn=text_to_speech,
|
26 |
inputs=[
|
27 |
+
gr.Textbox(label="Text", value="Text to Speech with Diffusion Transformer"),
|
28 |
gr.Dropdown(choices=speaker_ids, label="Speaker ID", value="0"),
|
29 |
gr.Slider(minimum=0, maximum=10, value=4.0, label="CFG Scale"),
|
30 |
gr.Dropdown(choices=sampling_steps, label="Sampling Steps", value=100),
|
diffusion.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
import gaussian_diffusion as gd
|
7 |
+
from respace import SpacedDiffusion, space_timesteps
|
8 |
+
|
9 |
+
|
10 |
+
def create_diffusion(
|
11 |
+
timestep_respacing,
|
12 |
+
noise_schedule="linear",
|
13 |
+
use_kl=False,
|
14 |
+
sigma_small=False,
|
15 |
+
predict_xstart=False,
|
16 |
+
learn_sigma=True,
|
17 |
+
rescale_learned_sigmas=False,
|
18 |
+
diffusion_steps=1000,
|
19 |
+
):
|
20 |
+
betas = gd.get_named_beta_schedule(noise_schedule, diffusion_steps)
|
21 |
+
if use_kl:
|
22 |
+
loss_type = gd.LossType.RESCALED_KL
|
23 |
+
elif rescale_learned_sigmas:
|
24 |
+
loss_type = gd.LossType.RESCALED_MSE
|
25 |
+
else:
|
26 |
+
loss_type = gd.LossType.MSE
|
27 |
+
if timestep_respacing is None or timestep_respacing == "":
|
28 |
+
timestep_respacing = [diffusion_steps]
|
29 |
+
return SpacedDiffusion(
|
30 |
+
use_timesteps=space_timesteps(diffusion_steps, timestep_respacing),
|
31 |
+
betas=betas,
|
32 |
+
model_mean_type=(
|
33 |
+
gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X
|
34 |
+
),
|
35 |
+
model_var_type=(
|
36 |
+
(
|
37 |
+
gd.ModelVarType.FIXED_LARGE
|
38 |
+
if not sigma_small
|
39 |
+
else gd.ModelVarType.FIXED_SMALL
|
40 |
+
)
|
41 |
+
if not learn_sigma
|
42 |
+
else gd.ModelVarType.LEARNED_RANGE
|
43 |
+
),
|
44 |
+
loss_type=loss_type,
|
45 |
+
# rescale_timesteps=rescale_timesteps,
|
46 |
+
)
|
diffusion_utils.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch as th
|
8 |
+
|
9 |
+
|
10 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
11 |
+
"""
|
12 |
+
Compute the KL divergence between two gaussians.
|
13 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
14 |
+
scalars, among other use cases.
|
15 |
+
"""
|
16 |
+
tensor = None
|
17 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
18 |
+
if isinstance(obj, th.Tensor):
|
19 |
+
tensor = obj
|
20 |
+
break
|
21 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
22 |
+
|
23 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
24 |
+
# Tensors, but it does not work for th.exp().
|
25 |
+
logvar1, logvar2 = [
|
26 |
+
x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
|
27 |
+
for x in (logvar1, logvar2)
|
28 |
+
]
|
29 |
+
|
30 |
+
return 0.5 * (
|
31 |
+
-1.0
|
32 |
+
+ logvar2
|
33 |
+
- logvar1
|
34 |
+
+ th.exp(logvar1 - logvar2)
|
35 |
+
+ ((mean1 - mean2) ** 2) * th.exp(-logvar2)
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
def approx_standard_normal_cdf(x):
|
40 |
+
"""
|
41 |
+
A fast approximation of the cumulative distribution function of the
|
42 |
+
standard normal.
|
43 |
+
"""
|
44 |
+
return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3))))
|
45 |
+
|
46 |
+
|
47 |
+
def continuous_gaussian_log_likelihood(x, *, means, log_scales):
|
48 |
+
"""
|
49 |
+
Compute the log-likelihood of a continuous Gaussian distribution.
|
50 |
+
:param x: the targets
|
51 |
+
:param means: the Gaussian mean Tensor.
|
52 |
+
:param log_scales: the Gaussian log stddev Tensor.
|
53 |
+
:return: a tensor like x of log probabilities (in nats).
|
54 |
+
"""
|
55 |
+
centered_x = x - means
|
56 |
+
inv_stdv = th.exp(-log_scales)
|
57 |
+
normalized_x = centered_x * inv_stdv
|
58 |
+
log_probs = th.distributions.Normal(th.zeros_like(x), th.ones_like(x)).log_prob(
|
59 |
+
normalized_x
|
60 |
+
)
|
61 |
+
return log_probs
|
62 |
+
|
63 |
+
|
64 |
+
def discretized_gaussian_log_likelihood(x, *, means, log_scales):
|
65 |
+
"""
|
66 |
+
Compute the log-likelihood of a Gaussian distribution discretizing to a
|
67 |
+
given image.
|
68 |
+
:param x: the target images. It is assumed that this was uint8 values,
|
69 |
+
rescaled to the range [-1, 1].
|
70 |
+
:param means: the Gaussian mean Tensor.
|
71 |
+
:param log_scales: the Gaussian log stddev Tensor.
|
72 |
+
:return: a tensor like x of log probabilities (in nats).
|
73 |
+
"""
|
74 |
+
assert x.shape == means.shape == log_scales.shape
|
75 |
+
centered_x = x - means
|
76 |
+
inv_stdv = th.exp(-log_scales)
|
77 |
+
plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
|
78 |
+
cdf_plus = approx_standard_normal_cdf(plus_in)
|
79 |
+
min_in = inv_stdv * (centered_x - 1.0 / 255.0)
|
80 |
+
cdf_min = approx_standard_normal_cdf(min_in)
|
81 |
+
log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
|
82 |
+
log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
|
83 |
+
cdf_delta = cdf_plus - cdf_min
|
84 |
+
log_probs = th.where(
|
85 |
+
x < -0.999,
|
86 |
+
log_cdf_plus,
|
87 |
+
th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))),
|
88 |
+
)
|
89 |
+
assert log_probs.shape == x.shape
|
90 |
+
return log_probs
|
gaussian_diffusion.py
ADDED
@@ -0,0 +1,917 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
|
7 |
+
import enum
|
8 |
+
import math
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch as th
|
12 |
+
|
13 |
+
from diffusion_utils import discretized_gaussian_log_likelihood, normal_kl
|
14 |
+
|
15 |
+
|
16 |
+
def mean_flat(tensor):
|
17 |
+
"""
|
18 |
+
Take the mean over all non-batch dimensions.
|
19 |
+
"""
|
20 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
21 |
+
|
22 |
+
|
23 |
+
class ModelMeanType(enum.Enum):
|
24 |
+
"""
|
25 |
+
Which type of output the model predicts.
|
26 |
+
"""
|
27 |
+
|
28 |
+
PREVIOUS_X = enum.auto() # the model predicts x_{t-1}
|
29 |
+
START_X = enum.auto() # the model predicts x_0
|
30 |
+
EPSILON = enum.auto() # the model predicts epsilon
|
31 |
+
|
32 |
+
|
33 |
+
class ModelVarType(enum.Enum):
|
34 |
+
"""
|
35 |
+
What is used as the model's output variance.
|
36 |
+
The LEARNED_RANGE option has been added to allow the model to predict
|
37 |
+
values between FIXED_SMALL and FIXED_LARGE, making its job easier.
|
38 |
+
"""
|
39 |
+
|
40 |
+
LEARNED = enum.auto()
|
41 |
+
FIXED_SMALL = enum.auto()
|
42 |
+
FIXED_LARGE = enum.auto()
|
43 |
+
LEARNED_RANGE = enum.auto()
|
44 |
+
|
45 |
+
|
46 |
+
class LossType(enum.Enum):
|
47 |
+
MSE = enum.auto() # use raw MSE loss (and KL when learning variances)
|
48 |
+
RESCALED_MSE = (
|
49 |
+
enum.auto()
|
50 |
+
) # use raw MSE loss (with RESCALED_KL when learning variances)
|
51 |
+
KL = enum.auto() # use the variational lower-bound
|
52 |
+
RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB
|
53 |
+
|
54 |
+
def is_vb(self):
|
55 |
+
return self == LossType.KL or self == LossType.RESCALED_KL
|
56 |
+
|
57 |
+
|
58 |
+
def _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, warmup_frac):
|
59 |
+
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
|
60 |
+
warmup_time = int(num_diffusion_timesteps * warmup_frac)
|
61 |
+
betas[:warmup_time] = np.linspace(
|
62 |
+
beta_start, beta_end, warmup_time, dtype=np.float64
|
63 |
+
)
|
64 |
+
return betas
|
65 |
+
|
66 |
+
|
67 |
+
def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps):
|
68 |
+
"""
|
69 |
+
This is the deprecated API for creating beta schedules.
|
70 |
+
See get_named_beta_schedule() for the new library of schedules.
|
71 |
+
"""
|
72 |
+
if beta_schedule == "quad":
|
73 |
+
betas = (
|
74 |
+
np.linspace(
|
75 |
+
beta_start**0.5,
|
76 |
+
beta_end**0.5,
|
77 |
+
num_diffusion_timesteps,
|
78 |
+
dtype=np.float64,
|
79 |
+
)
|
80 |
+
** 2
|
81 |
+
)
|
82 |
+
elif beta_schedule == "linear":
|
83 |
+
betas = np.linspace(
|
84 |
+
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
|
85 |
+
)
|
86 |
+
elif beta_schedule == "warmup10":
|
87 |
+
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.1)
|
88 |
+
elif beta_schedule == "warmup50":
|
89 |
+
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.5)
|
90 |
+
elif beta_schedule == "const":
|
91 |
+
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
|
92 |
+
elif beta_schedule == "jsd": # 1/T, 1/(T-1), 1/(T-2), ..., 1
|
93 |
+
betas = 1.0 / np.linspace(
|
94 |
+
num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64
|
95 |
+
)
|
96 |
+
else:
|
97 |
+
raise NotImplementedError(beta_schedule)
|
98 |
+
assert betas.shape == (num_diffusion_timesteps,)
|
99 |
+
return betas
|
100 |
+
|
101 |
+
|
102 |
+
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
|
103 |
+
"""
|
104 |
+
Get a pre-defined beta schedule for the given name.
|
105 |
+
The beta schedule library consists of beta schedules which remain similar
|
106 |
+
in the limit of num_diffusion_timesteps.
|
107 |
+
Beta schedules may be added, but should not be removed or changed once
|
108 |
+
they are committed to maintain backwards compatibility.
|
109 |
+
"""
|
110 |
+
if schedule_name == "linear":
|
111 |
+
# Linear schedule from Ho et al, extended to work for any number of
|
112 |
+
# diffusion steps.
|
113 |
+
scale = 1000 / num_diffusion_timesteps
|
114 |
+
return get_beta_schedule(
|
115 |
+
"linear",
|
116 |
+
beta_start=scale * 0.0001,
|
117 |
+
beta_end=scale * 0.02,
|
118 |
+
num_diffusion_timesteps=num_diffusion_timesteps,
|
119 |
+
)
|
120 |
+
elif schedule_name == "squaredcos_cap_v2":
|
121 |
+
return betas_for_alpha_bar(
|
122 |
+
num_diffusion_timesteps,
|
123 |
+
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
124 |
+
)
|
125 |
+
else:
|
126 |
+
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
|
127 |
+
|
128 |
+
|
129 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
130 |
+
"""
|
131 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
132 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
133 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
134 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
135 |
+
produces the cumulative product of (1-beta) up to that
|
136 |
+
part of the diffusion process.
|
137 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
138 |
+
prevent singularities.
|
139 |
+
"""
|
140 |
+
betas = []
|
141 |
+
for i in range(num_diffusion_timesteps):
|
142 |
+
t1 = i / num_diffusion_timesteps
|
143 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
144 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
145 |
+
return np.array(betas)
|
146 |
+
|
147 |
+
|
148 |
+
class GaussianDiffusion:
|
149 |
+
"""
|
150 |
+
Utilities for training and sampling diffusion models.
|
151 |
+
Original ported from this codebase:
|
152 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
|
153 |
+
:param betas: a 1-D numpy array of betas for each diffusion timestep,
|
154 |
+
starting at T and going to 1.
|
155 |
+
"""
|
156 |
+
|
157 |
+
def __init__(self, *, betas, model_mean_type, model_var_type, loss_type):
|
158 |
+
|
159 |
+
self.model_mean_type = model_mean_type
|
160 |
+
self.model_var_type = model_var_type
|
161 |
+
self.loss_type = loss_type
|
162 |
+
|
163 |
+
# Use float64 for accuracy.
|
164 |
+
betas = np.array(betas, dtype=np.float64)
|
165 |
+
self.betas = betas
|
166 |
+
assert len(betas.shape) == 1, "betas must be 1-D"
|
167 |
+
assert (betas > 0).all() and (betas <= 1).all()
|
168 |
+
|
169 |
+
self.num_timesteps = int(betas.shape[0])
|
170 |
+
|
171 |
+
alphas = 1.0 - betas
|
172 |
+
self.alphas_cumprod = np.cumprod(alphas, axis=0)
|
173 |
+
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
|
174 |
+
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
|
175 |
+
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
|
176 |
+
|
177 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
178 |
+
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
|
179 |
+
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
|
180 |
+
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
|
181 |
+
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
|
182 |
+
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
|
183 |
+
|
184 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
185 |
+
self.posterior_variance = (
|
186 |
+
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
187 |
+
)
|
188 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
189 |
+
self.posterior_log_variance_clipped = (
|
190 |
+
np.log(np.append(self.posterior_variance[1], self.posterior_variance[1:]))
|
191 |
+
if len(self.posterior_variance) > 1
|
192 |
+
else np.array([])
|
193 |
+
)
|
194 |
+
|
195 |
+
self.posterior_mean_coef1 = (
|
196 |
+
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
197 |
+
)
|
198 |
+
self.posterior_mean_coef2 = (
|
199 |
+
(1.0 - self.alphas_cumprod_prev)
|
200 |
+
* np.sqrt(alphas)
|
201 |
+
/ (1.0 - self.alphas_cumprod)
|
202 |
+
)
|
203 |
+
|
204 |
+
# convert all numpy arrays to torch tensors
|
205 |
+
DEVICE = th.device("cpu")
|
206 |
+
self.betas = th.from_numpy(self.betas).to(DEVICE)
|
207 |
+
self.alphas_cumprod = th.from_numpy(self.alphas_cumprod).to(DEVICE)
|
208 |
+
self.alphas_cumprod_prev = th.from_numpy(self.alphas_cumprod_prev).to(DEVICE)
|
209 |
+
self.alphas_cumprod_next = th.from_numpy(self.alphas_cumprod_next).to(DEVICE)
|
210 |
+
self.sqrt_alphas_cumprod = th.from_numpy(self.sqrt_alphas_cumprod).to(DEVICE)
|
211 |
+
self.sqrt_one_minus_alphas_cumprod = th.from_numpy(self.sqrt_one_minus_alphas_cumprod).to(DEVICE)
|
212 |
+
self.log_one_minus_alphas_cumprod = th.from_numpy(self.log_one_minus_alphas_cumprod).to(DEVICE)
|
213 |
+
self.sqrt_recip_alphas_cumprod = th.from_numpy(self.sqrt_recip_alphas_cumprod).to(DEVICE)
|
214 |
+
self.sqrt_recipm1_alphas_cumprod = th.from_numpy(self.sqrt_recipm1_alphas_cumprod).to(DEVICE)
|
215 |
+
self.posterior_variance = th.from_numpy(self.posterior_variance).to(DEVICE)
|
216 |
+
self.posterior_log_variance_clipped = th.from_numpy(self.posterior_log_variance_clipped).to(DEVICE)
|
217 |
+
self.posterior_mean_coef1 = th.from_numpy(self.posterior_mean_coef1).to(DEVICE)
|
218 |
+
self.posterior_mean_coef2 = th.from_numpy(self.posterior_mean_coef2).to(DEVICE)
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
def q_mean_variance(self, x_start, t):
|
223 |
+
"""
|
224 |
+
Get the distribution q(x_t | x_0).
|
225 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
226 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
227 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
228 |
+
"""
|
229 |
+
mean = (
|
230 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
231 |
+
)
|
232 |
+
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
233 |
+
log_variance = _extract_into_tensor(
|
234 |
+
self.log_one_minus_alphas_cumprod, t, x_start.shape
|
235 |
+
)
|
236 |
+
return mean, variance, log_variance
|
237 |
+
|
238 |
+
def q_sample(self, x_start, t, noise=None):
|
239 |
+
"""
|
240 |
+
Diffuse the data for a given number of diffusion steps.
|
241 |
+
In other words, sample from q(x_t | x_0).
|
242 |
+
:param x_start: the initial data batch.
|
243 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
244 |
+
:param noise: if specified, the split-out normal noise.
|
245 |
+
:return: A noisy version of x_start.
|
246 |
+
"""
|
247 |
+
if noise is None:
|
248 |
+
noise = th.randn_like(x_start)
|
249 |
+
assert noise.shape == x_start.shape
|
250 |
+
return (
|
251 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
252 |
+
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
|
253 |
+
* noise
|
254 |
+
)
|
255 |
+
|
256 |
+
def q_posterior_mean_variance(self, x_start, x_t, t):
|
257 |
+
"""
|
258 |
+
Compute the mean and variance of the diffusion posterior:
|
259 |
+
q(x_{t-1} | x_t, x_0)
|
260 |
+
"""
|
261 |
+
assert x_start.shape == x_t.shape
|
262 |
+
posterior_mean = (
|
263 |
+
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
|
264 |
+
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
265 |
+
)
|
266 |
+
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
267 |
+
posterior_log_variance_clipped = _extract_into_tensor(
|
268 |
+
self.posterior_log_variance_clipped, t, x_t.shape
|
269 |
+
)
|
270 |
+
assert (
|
271 |
+
posterior_mean.shape[0]
|
272 |
+
== posterior_variance.shape[0]
|
273 |
+
== posterior_log_variance_clipped.shape[0]
|
274 |
+
== x_start.shape[0]
|
275 |
+
)
|
276 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
277 |
+
|
278 |
+
def p_mean_variance(
|
279 |
+
self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
|
280 |
+
):
|
281 |
+
"""
|
282 |
+
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
|
283 |
+
the initial x, x_0.
|
284 |
+
:param model: the model, which takes a signal and a batch of timesteps
|
285 |
+
as input.
|
286 |
+
:param x: the [N x C x ...] tensor at time t.
|
287 |
+
:param t: a 1-D Tensor of timesteps.
|
288 |
+
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
|
289 |
+
:param denoised_fn: if not None, a function which applies to the
|
290 |
+
x_start prediction before it is used to sample. Applies before
|
291 |
+
clip_denoised.
|
292 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
293 |
+
pass to the model. This can be used for conditioning.
|
294 |
+
:return: a dict with the following keys:
|
295 |
+
- 'mean': the model mean output.
|
296 |
+
- 'variance': the model variance output.
|
297 |
+
- 'log_variance': the log of 'variance'.
|
298 |
+
- 'pred_xstart': the prediction for x_0.
|
299 |
+
"""
|
300 |
+
if model_kwargs is None:
|
301 |
+
model_kwargs = {}
|
302 |
+
|
303 |
+
B, C = x.shape[:2]
|
304 |
+
assert t.shape == (B,)
|
305 |
+
model_output = model(x, t, **model_kwargs)
|
306 |
+
if isinstance(model_output, tuple):
|
307 |
+
model_output, extra = model_output
|
308 |
+
else:
|
309 |
+
extra = None
|
310 |
+
|
311 |
+
if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
|
312 |
+
assert model_output.shape == (B, C * 2, *x.shape[2:])
|
313 |
+
model_output, model_var_values = th.split(model_output, C, dim=1)
|
314 |
+
min_log = _extract_into_tensor(
|
315 |
+
self.posterior_log_variance_clipped, t, x.shape
|
316 |
+
)
|
317 |
+
max_log = _extract_into_tensor(th.log(self.betas), t, x.shape)
|
318 |
+
# The model_var_values is [-1, 1] for [min_var, max_var].
|
319 |
+
frac = (model_var_values + 1) / 2
|
320 |
+
model_log_variance = frac * max_log + (1 - frac) * min_log
|
321 |
+
model_variance = th.exp(model_log_variance)
|
322 |
+
else:
|
323 |
+
model_variance, model_log_variance = {
|
324 |
+
# for fixedlarge, we set the initial (log-)variance like so
|
325 |
+
# to get a better decoder log likelihood.
|
326 |
+
ModelVarType.FIXED_LARGE: (
|
327 |
+
th.cat([self.posterior_variance[1], self.betas[1:]]),
|
328 |
+
th.log(th.cat([self.posterior_variance[1], self.betas[1:]])),
|
329 |
+
),
|
330 |
+
ModelVarType.FIXED_SMALL: (
|
331 |
+
self.posterior_variance,
|
332 |
+
self.posterior_log_variance_clipped,
|
333 |
+
),
|
334 |
+
}[self.model_var_type]
|
335 |
+
model_variance = _extract_into_tensor(model_variance, t, x.shape)
|
336 |
+
model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
|
337 |
+
|
338 |
+
def process_xstart(x):
|
339 |
+
if denoised_fn is not None:
|
340 |
+
x = denoised_fn(x)
|
341 |
+
if clip_denoised:
|
342 |
+
return x.clamp(-1, 1)
|
343 |
+
return x
|
344 |
+
|
345 |
+
if self.model_mean_type == ModelMeanType.START_X:
|
346 |
+
pred_xstart = process_xstart(model_output)
|
347 |
+
else:
|
348 |
+
pred_xstart = process_xstart(
|
349 |
+
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
|
350 |
+
)
|
351 |
+
model_mean, _, _ = self.q_posterior_mean_variance(
|
352 |
+
x_start=pred_xstart, x_t=x, t=t
|
353 |
+
)
|
354 |
+
|
355 |
+
assert (
|
356 |
+
model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
|
357 |
+
)
|
358 |
+
return {
|
359 |
+
"mean": model_mean,
|
360 |
+
"variance": model_variance,
|
361 |
+
"log_variance": model_log_variance,
|
362 |
+
"pred_xstart": pred_xstart,
|
363 |
+
"extra": extra,
|
364 |
+
}
|
365 |
+
|
366 |
+
def _predict_xstart_from_eps(self, x_t, t, eps):
|
367 |
+
assert x_t.shape == eps.shape
|
368 |
+
return (
|
369 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
370 |
+
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
|
371 |
+
)
|
372 |
+
|
373 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
374 |
+
return (
|
375 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
376 |
+
- pred_xstart
|
377 |
+
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
378 |
+
|
379 |
+
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
380 |
+
"""
|
381 |
+
Compute the mean for the previous step, given a function cond_fn that
|
382 |
+
computes the gradient of a conditional log probability with respect to
|
383 |
+
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to
|
384 |
+
condition on y.
|
385 |
+
This uses the conditioning strategy from Sohl-Dickstein et al. (2015).
|
386 |
+
"""
|
387 |
+
gradient = cond_fn(x, t, **model_kwargs)
|
388 |
+
new_mean = (
|
389 |
+
p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float()
|
390 |
+
)
|
391 |
+
return new_mean
|
392 |
+
|
393 |
+
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
394 |
+
"""
|
395 |
+
Compute what the p_mean_variance output would have been, should the
|
396 |
+
model's score function be conditioned by cond_fn.
|
397 |
+
See condition_mean() for details on cond_fn.
|
398 |
+
Unlike condition_mean(), this instead uses the conditioning strategy
|
399 |
+
from Song et al (2020).
|
400 |
+
"""
|
401 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
402 |
+
|
403 |
+
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
|
404 |
+
eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, t, **model_kwargs)
|
405 |
+
|
406 |
+
out = p_mean_var.copy()
|
407 |
+
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps)
|
408 |
+
out["mean"], _, _ = self.q_posterior_mean_variance(
|
409 |
+
x_start=out["pred_xstart"], x_t=x, t=t
|
410 |
+
)
|
411 |
+
return out
|
412 |
+
|
413 |
+
def p_sample(
|
414 |
+
self,
|
415 |
+
model,
|
416 |
+
x,
|
417 |
+
t,
|
418 |
+
clip_denoised=True,
|
419 |
+
denoised_fn=None,
|
420 |
+
cond_fn=None,
|
421 |
+
model_kwargs=None,
|
422 |
+
):
|
423 |
+
"""
|
424 |
+
Sample x_{t-1} from the model at the given timestep.
|
425 |
+
:param model: the model to sample from.
|
426 |
+
:param x: the current tensor at x_{t-1}.
|
427 |
+
:param t: the value of t, starting at 0 for the first diffusion step.
|
428 |
+
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
|
429 |
+
:param denoised_fn: if not None, a function which applies to the
|
430 |
+
x_start prediction before it is used to sample.
|
431 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
432 |
+
similarly to the model.
|
433 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
434 |
+
pass to the model. This can be used for conditioning.
|
435 |
+
:return: a dict containing the following keys:
|
436 |
+
- 'sample': a random sample from the model.
|
437 |
+
- 'pred_xstart': a prediction of x_0.
|
438 |
+
"""
|
439 |
+
out = self.p_mean_variance(
|
440 |
+
model,
|
441 |
+
x,
|
442 |
+
t,
|
443 |
+
clip_denoised=clip_denoised,
|
444 |
+
denoised_fn=denoised_fn,
|
445 |
+
model_kwargs=model_kwargs,
|
446 |
+
)
|
447 |
+
noise = th.randn_like(x)
|
448 |
+
nonzero_mask = (
|
449 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
450 |
+
) # no noise when t == 0
|
451 |
+
if cond_fn is not None:
|
452 |
+
out["mean"] = self.condition_mean(
|
453 |
+
cond_fn, out, x, t, model_kwargs=model_kwargs
|
454 |
+
)
|
455 |
+
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
|
456 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
457 |
+
|
458 |
+
def p_sample_loop(
|
459 |
+
self,
|
460 |
+
model,
|
461 |
+
shape,
|
462 |
+
noise=None,
|
463 |
+
clip_denoised=True,
|
464 |
+
denoised_fn=None,
|
465 |
+
cond_fn=None,
|
466 |
+
model_kwargs=None,
|
467 |
+
device=None,
|
468 |
+
progress=False,
|
469 |
+
):
|
470 |
+
"""
|
471 |
+
Generate samples from the model.
|
472 |
+
:param model: the model module.
|
473 |
+
:param shape: the shape of the samples, (N, C, H, W).
|
474 |
+
:param noise: if specified, the noise from the encoder to sample.
|
475 |
+
Should be of the same shape as `shape`.
|
476 |
+
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
|
477 |
+
:param denoised_fn: if not None, a function which applies to the
|
478 |
+
x_start prediction before it is used to sample.
|
479 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
480 |
+
similarly to the model.
|
481 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
482 |
+
pass to the model. This can be used for conditioning.
|
483 |
+
:param device: if specified, the device to create the samples on.
|
484 |
+
If not specified, use a model parameter's device.
|
485 |
+
:param progress: if True, show a tqdm progress bar.
|
486 |
+
:return: a non-differentiable batch of samples.
|
487 |
+
"""
|
488 |
+
final = None
|
489 |
+
samples = []
|
490 |
+
for sample in self.p_sample_loop_progressive(
|
491 |
+
model,
|
492 |
+
shape,
|
493 |
+
noise=noise,
|
494 |
+
clip_denoised=clip_denoised,
|
495 |
+
denoised_fn=denoised_fn,
|
496 |
+
cond_fn=cond_fn,
|
497 |
+
model_kwargs=model_kwargs,
|
498 |
+
device=device,
|
499 |
+
progress=progress,
|
500 |
+
):
|
501 |
+
final = sample
|
502 |
+
samples.append(final["sample"])
|
503 |
+
return samples
|
504 |
+
|
505 |
+
def p_sample_loop_progressive(
|
506 |
+
self,
|
507 |
+
model,
|
508 |
+
shape,
|
509 |
+
noise=None,
|
510 |
+
clip_denoised=True,
|
511 |
+
denoised_fn=None,
|
512 |
+
cond_fn=None,
|
513 |
+
model_kwargs=None,
|
514 |
+
device=None,
|
515 |
+
progress=False,
|
516 |
+
):
|
517 |
+
"""
|
518 |
+
Generate samples from the model and yield intermediate samples from
|
519 |
+
each timestep of diffusion.
|
520 |
+
Arguments are the same as p_sample_loop().
|
521 |
+
Returns a generator over dicts, where each dict is the return value of
|
522 |
+
p_sample().
|
523 |
+
"""
|
524 |
+
if device is None:
|
525 |
+
device = next(model.parameters()).device
|
526 |
+
assert isinstance(shape, (tuple, list))
|
527 |
+
if noise is not None:
|
528 |
+
img = noise
|
529 |
+
else:
|
530 |
+
img = th.randn(*shape, device=device)
|
531 |
+
indices = list(range(self.num_timesteps))[::-1]
|
532 |
+
|
533 |
+
if progress:
|
534 |
+
# Lazy import so that we don't depend on tqdm.
|
535 |
+
from tqdm.auto import tqdm
|
536 |
+
|
537 |
+
indices = tqdm(indices)
|
538 |
+
|
539 |
+
for i in indices:
|
540 |
+
t = th.tensor([i] * shape[0], device=device)
|
541 |
+
with th.no_grad():
|
542 |
+
out = self.p_sample(
|
543 |
+
model,
|
544 |
+
img,
|
545 |
+
t,
|
546 |
+
clip_denoised=clip_denoised,
|
547 |
+
denoised_fn=denoised_fn,
|
548 |
+
cond_fn=cond_fn,
|
549 |
+
model_kwargs=model_kwargs,
|
550 |
+
)
|
551 |
+
yield out
|
552 |
+
img = out["sample"]
|
553 |
+
|
554 |
+
def ddim_sample(
|
555 |
+
self,
|
556 |
+
model,
|
557 |
+
x,
|
558 |
+
t,
|
559 |
+
clip_denoised=True,
|
560 |
+
denoised_fn=None,
|
561 |
+
cond_fn=None,
|
562 |
+
model_kwargs=None,
|
563 |
+
eta=0.0,
|
564 |
+
):
|
565 |
+
"""
|
566 |
+
Sample x_{t-1} from the model using DDIM.
|
567 |
+
Same usage as p_sample().
|
568 |
+
"""
|
569 |
+
out = self.p_mean_variance(
|
570 |
+
model,
|
571 |
+
x,
|
572 |
+
t,
|
573 |
+
clip_denoised=clip_denoised,
|
574 |
+
denoised_fn=denoised_fn,
|
575 |
+
model_kwargs=model_kwargs,
|
576 |
+
)
|
577 |
+
if cond_fn is not None:
|
578 |
+
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
579 |
+
|
580 |
+
# Usually our model outputs epsilon, but we re-derive it
|
581 |
+
# in case we used x_start or x_prev prediction.
|
582 |
+
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
|
583 |
+
|
584 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
585 |
+
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
|
586 |
+
sigma = (
|
587 |
+
eta
|
588 |
+
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
|
589 |
+
* th.sqrt(1 - alpha_bar / alpha_bar_prev)
|
590 |
+
)
|
591 |
+
# Equation 12.
|
592 |
+
noise = th.randn_like(x)
|
593 |
+
mean_pred = (
|
594 |
+
out["pred_xstart"] * th.sqrt(alpha_bar_prev)
|
595 |
+
+ th.sqrt(1 - alpha_bar_prev - sigma**2) * eps
|
596 |
+
)
|
597 |
+
nonzero_mask = (
|
598 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
599 |
+
) # no noise when t == 0
|
600 |
+
sample = mean_pred + nonzero_mask * sigma * noise
|
601 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
602 |
+
|
603 |
+
def ddim_reverse_sample(
|
604 |
+
self,
|
605 |
+
model,
|
606 |
+
x,
|
607 |
+
t,
|
608 |
+
clip_denoised=True,
|
609 |
+
denoised_fn=None,
|
610 |
+
cond_fn=None,
|
611 |
+
model_kwargs=None,
|
612 |
+
eta=0.0,
|
613 |
+
):
|
614 |
+
"""
|
615 |
+
Sample x_{t+1} from the model using DDIM reverse ODE.
|
616 |
+
"""
|
617 |
+
assert eta == 0.0, "Reverse ODE only for deterministic path"
|
618 |
+
out = self.p_mean_variance(
|
619 |
+
model,
|
620 |
+
x,
|
621 |
+
t,
|
622 |
+
clip_denoised=clip_denoised,
|
623 |
+
denoised_fn=denoised_fn,
|
624 |
+
model_kwargs=model_kwargs,
|
625 |
+
)
|
626 |
+
if cond_fn is not None:
|
627 |
+
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
628 |
+
# Usually our model outputs epsilon, but we re-derive it
|
629 |
+
# in case we used x_start or x_prev prediction.
|
630 |
+
eps = (
|
631 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
|
632 |
+
- out["pred_xstart"]
|
633 |
+
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape)
|
634 |
+
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)
|
635 |
+
|
636 |
+
# Equation 12. reversed
|
637 |
+
mean_pred = (
|
638 |
+
out["pred_xstart"] * th.sqrt(alpha_bar_next)
|
639 |
+
+ th.sqrt(1 - alpha_bar_next) * eps
|
640 |
+
)
|
641 |
+
|
642 |
+
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
|
643 |
+
|
644 |
+
def ddim_sample_loop(
|
645 |
+
self,
|
646 |
+
model,
|
647 |
+
shape,
|
648 |
+
noise=None,
|
649 |
+
clip_denoised=True,
|
650 |
+
denoised_fn=None,
|
651 |
+
cond_fn=None,
|
652 |
+
model_kwargs=None,
|
653 |
+
device=None,
|
654 |
+
progress=False,
|
655 |
+
eta=0.0,
|
656 |
+
):
|
657 |
+
"""
|
658 |
+
Generate samples from the model using DDIM.
|
659 |
+
Same usage as p_sample_loop().
|
660 |
+
"""
|
661 |
+
final = None
|
662 |
+
for sample in self.ddim_sample_loop_progressive(
|
663 |
+
model,
|
664 |
+
shape,
|
665 |
+
noise=noise,
|
666 |
+
clip_denoised=clip_denoised,
|
667 |
+
denoised_fn=denoised_fn,
|
668 |
+
cond_fn=cond_fn,
|
669 |
+
model_kwargs=model_kwargs,
|
670 |
+
device=device,
|
671 |
+
progress=progress,
|
672 |
+
eta=eta,
|
673 |
+
):
|
674 |
+
final = sample
|
675 |
+
return final["sample"]
|
676 |
+
|
677 |
+
def ddim_sample_loop_progressive(
|
678 |
+
self,
|
679 |
+
model,
|
680 |
+
shape,
|
681 |
+
noise=None,
|
682 |
+
clip_denoised=True,
|
683 |
+
denoised_fn=None,
|
684 |
+
cond_fn=None,
|
685 |
+
model_kwargs=None,
|
686 |
+
device=None,
|
687 |
+
progress=False,
|
688 |
+
eta=0.0,
|
689 |
+
):
|
690 |
+
"""
|
691 |
+
Use DDIM to sample from the model and yield intermediate samples from
|
692 |
+
each timestep of DDIM.
|
693 |
+
Same usage as p_sample_loop_progressive().
|
694 |
+
"""
|
695 |
+
if device is None:
|
696 |
+
device = next(model.parameters()).device
|
697 |
+
assert isinstance(shape, (tuple, list))
|
698 |
+
if noise is not None:
|
699 |
+
img = noise
|
700 |
+
else:
|
701 |
+
img = th.randn(*shape, device=device)
|
702 |
+
indices = list(range(self.num_timesteps))[::-1]
|
703 |
+
|
704 |
+
if progress:
|
705 |
+
# Lazy import so that we don't depend on tqdm.
|
706 |
+
from tqdm.auto import tqdm
|
707 |
+
|
708 |
+
indices = tqdm(indices)
|
709 |
+
|
710 |
+
for i in indices:
|
711 |
+
t = th.tensor([i] * shape[0], device=device)
|
712 |
+
with th.no_grad():
|
713 |
+
out = self.ddim_sample(
|
714 |
+
model,
|
715 |
+
img,
|
716 |
+
t,
|
717 |
+
clip_denoised=clip_denoised,
|
718 |
+
denoised_fn=denoised_fn,
|
719 |
+
cond_fn=cond_fn,
|
720 |
+
model_kwargs=model_kwargs,
|
721 |
+
eta=eta,
|
722 |
+
)
|
723 |
+
yield out
|
724 |
+
img = out["sample"]
|
725 |
+
|
726 |
+
def _vb_terms_bpd(
|
727 |
+
self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None
|
728 |
+
):
|
729 |
+
"""
|
730 |
+
Get a term for the variational lower-bound.
|
731 |
+
The resulting units are bits (rather than nats, as one might expect).
|
732 |
+
This allows for comparison to other papers.
|
733 |
+
:return: a dict with the following keys:
|
734 |
+
- 'output': a shape [N] tensor of NLLs or KLs.
|
735 |
+
- 'pred_xstart': the x_0 predictions.
|
736 |
+
"""
|
737 |
+
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
|
738 |
+
x_start=x_start, x_t=x_t, t=t
|
739 |
+
)
|
740 |
+
out = self.p_mean_variance(
|
741 |
+
model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs
|
742 |
+
)
|
743 |
+
kl = normal_kl(
|
744 |
+
true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]
|
745 |
+
)
|
746 |
+
kl = kl / math.log(2.0)
|
747 |
+
|
748 |
+
decoder_nll = -discretized_gaussian_log_likelihood(
|
749 |
+
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]
|
750 |
+
)
|
751 |
+
assert decoder_nll.shape == x_start.shape
|
752 |
+
decoder_nll = decoder_nll / math.log(2.0)
|
753 |
+
|
754 |
+
# At the first timestep return the decoder NLL,
|
755 |
+
# otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
|
756 |
+
output = th.where((t[:, None, None] == 0), decoder_nll, kl)
|
757 |
+
return {"output": output, "pred_xstart": out["pred_xstart"]}
|
758 |
+
|
759 |
+
def training_losses(self, model, x_start, t, model_kwargs=None, noise=None):
|
760 |
+
"""
|
761 |
+
Compute training losses for a single timestep.
|
762 |
+
:param model: the model to evaluate loss on.
|
763 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
764 |
+
:param t: a batch of timestep indices.
|
765 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
766 |
+
pass to the model. This can be used for conditioning.
|
767 |
+
:param noise: if specified, the specific Gaussian noise to try to remove.
|
768 |
+
:return: a dict with the key "loss" containing a tensor of shape [N].
|
769 |
+
Some mean or variance settings may also have other keys.
|
770 |
+
"""
|
771 |
+
if model_kwargs is None:
|
772 |
+
model_kwargs = {}
|
773 |
+
if noise is None:
|
774 |
+
noise = th.randn_like(x_start)
|
775 |
+
x_t = self.q_sample(x_start, t, noise=noise)
|
776 |
+
|
777 |
+
terms = {}
|
778 |
+
|
779 |
+
if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL:
|
780 |
+
terms["loss"] = self._vb_terms_bpd(
|
781 |
+
model=model,
|
782 |
+
x_start=x_start,
|
783 |
+
x_t=x_t,
|
784 |
+
t=t,
|
785 |
+
clip_denoised=False,
|
786 |
+
model_kwargs=model_kwargs,
|
787 |
+
)["output"]
|
788 |
+
if self.loss_type == LossType.RESCALED_KL:
|
789 |
+
terms["loss"] *= self.num_timesteps
|
790 |
+
elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE:
|
791 |
+
model_output = model(x_t, t, **model_kwargs)
|
792 |
+
|
793 |
+
if self.model_var_type in [
|
794 |
+
ModelVarType.LEARNED,
|
795 |
+
ModelVarType.LEARNED_RANGE,
|
796 |
+
]:
|
797 |
+
B, C = x_t.shape[:2]
|
798 |
+
assert model_output.shape == (B, C * 2, *x_t.shape[2:])
|
799 |
+
model_output, model_var_values = th.split(model_output, C, dim=1)
|
800 |
+
# Learn the variance using the variational bound, but don't let
|
801 |
+
# it affect our mean prediction.
|
802 |
+
frozen_out = th.cat([model_output.detach(), model_var_values], dim=1)
|
803 |
+
terms["vb"] = self._vb_terms_bpd(
|
804 |
+
model=lambda *args, r=frozen_out: r,
|
805 |
+
x_start=x_start,
|
806 |
+
x_t=x_t,
|
807 |
+
t=t,
|
808 |
+
clip_denoised=False,
|
809 |
+
)["output"]
|
810 |
+
if self.loss_type == LossType.RESCALED_MSE:
|
811 |
+
# Divide by 1000 for equivalence with initial implementation.
|
812 |
+
# Without a factor of 1/1000, the VB term hurts the MSE term.
|
813 |
+
terms["vb"] *= self.num_timesteps / 1000.0
|
814 |
+
|
815 |
+
target = {
|
816 |
+
ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance(
|
817 |
+
x_start=x_start, x_t=x_t, t=t
|
818 |
+
)[0],
|
819 |
+
ModelMeanType.START_X: x_start,
|
820 |
+
ModelMeanType.EPSILON: noise,
|
821 |
+
}[self.model_mean_type]
|
822 |
+
assert model_output.shape == target.shape == x_start.shape
|
823 |
+
terms["mse"] = (target - model_output) ** 2
|
824 |
+
if "vb" in terms:
|
825 |
+
terms["loss"] = terms["mse"] + terms["vb"]
|
826 |
+
else:
|
827 |
+
terms["loss"] = terms["mse"]
|
828 |
+
else:
|
829 |
+
raise NotImplementedError(self.loss_type)
|
830 |
+
|
831 |
+
return terms
|
832 |
+
|
833 |
+
def _prior_bpd(self, x_start):
|
834 |
+
"""
|
835 |
+
Get the prior KL term for the variational lower-bound, measured in
|
836 |
+
bits-per-dim.
|
837 |
+
This term can't be optimized, as it only depends on the encoder.
|
838 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
839 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
840 |
+
"""
|
841 |
+
batch_size = x_start.shape[0]
|
842 |
+
t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
843 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
844 |
+
kl_prior = normal_kl(
|
845 |
+
mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
|
846 |
+
)
|
847 |
+
return mean_flat(kl_prior) / math.log(2.0)
|
848 |
+
|
849 |
+
def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None):
|
850 |
+
"""
|
851 |
+
Compute the entire variational lower-bound, measured in bits-per-dim,
|
852 |
+
as well as other related quantities.
|
853 |
+
:param model: the model to evaluate loss on.
|
854 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
855 |
+
:param clip_denoised: if True, clip denoised samples.
|
856 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
857 |
+
pass to the model. This can be used for conditioning.
|
858 |
+
:return: a dict containing the following keys:
|
859 |
+
- total_bpd: the total variational lower-bound, per batch element.
|
860 |
+
- prior_bpd: the prior term in the lower-bound.
|
861 |
+
- vb: an [N x T] tensor of terms in the lower-bound.
|
862 |
+
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep.
|
863 |
+
- mse: an [N x T] tensor of epsilon MSEs for each timestep.
|
864 |
+
"""
|
865 |
+
device = x_start.device
|
866 |
+
batch_size = x_start.shape[0]
|
867 |
+
|
868 |
+
vb = []
|
869 |
+
xstart_mse = []
|
870 |
+
mse = []
|
871 |
+
for t in list(range(self.num_timesteps))[::-1]:
|
872 |
+
t_batch = th.tensor([t] * batch_size, device=device)
|
873 |
+
noise = th.randn_like(x_start)
|
874 |
+
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise)
|
875 |
+
# Calculate VLB term at the current timestep
|
876 |
+
with th.no_grad():
|
877 |
+
out = self._vb_terms_bpd(
|
878 |
+
model,
|
879 |
+
x_start=x_start,
|
880 |
+
x_t=x_t,
|
881 |
+
t=t_batch,
|
882 |
+
clip_denoised=clip_denoised,
|
883 |
+
model_kwargs=model_kwargs,
|
884 |
+
)
|
885 |
+
vb.append(out["output"])
|
886 |
+
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2))
|
887 |
+
eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"])
|
888 |
+
mse.append(mean_flat((eps - noise) ** 2))
|
889 |
+
|
890 |
+
vb = th.stack(vb, dim=1)
|
891 |
+
xstart_mse = th.stack(xstart_mse, dim=1)
|
892 |
+
mse = th.stack(mse, dim=1)
|
893 |
+
|
894 |
+
prior_bpd = self._prior_bpd(x_start)
|
895 |
+
total_bpd = vb.sum(dim=1) + prior_bpd
|
896 |
+
return {
|
897 |
+
"total_bpd": total_bpd,
|
898 |
+
"prior_bpd": prior_bpd,
|
899 |
+
"vb": vb,
|
900 |
+
"xstart_mse": xstart_mse,
|
901 |
+
"mse": mse,
|
902 |
+
}
|
903 |
+
|
904 |
+
|
905 |
+
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
906 |
+
"""
|
907 |
+
Extract values from a 1-D numpy array for a batch of indices.
|
908 |
+
:param arr: the 1-D numpy array.
|
909 |
+
:param timesteps: a tensor of indices into the array to extract.
|
910 |
+
:param broadcast_shape: a larger shape of K dimensions with the batch
|
911 |
+
dimension equal to the length of timesteps.
|
912 |
+
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
913 |
+
"""
|
914 |
+
res = arr.to(device=timesteps.device)[timesteps].float()
|
915 |
+
while len(res.shape) < len(broadcast_shape):
|
916 |
+
res = res[..., None]
|
917 |
+
return res + th.zeros(broadcast_shape, device=timesteps.device)
|
respace.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch as th
|
8 |
+
|
9 |
+
from gaussian_diffusion import GaussianDiffusion
|
10 |
+
|
11 |
+
|
12 |
+
def space_timesteps(num_timesteps, section_counts):
|
13 |
+
"""
|
14 |
+
Create a list of timesteps to use from an original diffusion process,
|
15 |
+
given the number of timesteps we want to take from equally-sized portions
|
16 |
+
of the original process.
|
17 |
+
For example, if there's 300 timesteps and the section counts are [10,15,20]
|
18 |
+
then the first 100 timesteps are strided to be 10 timesteps, the second 100
|
19 |
+
are strided to be 15 timesteps, and the final 100 are strided to be 20.
|
20 |
+
If the stride is a string starting with "ddim", then the fixed striding
|
21 |
+
from the DDIM paper is used, and only one section is allowed.
|
22 |
+
:param num_timesteps: the number of diffusion steps in the original
|
23 |
+
process to divide up.
|
24 |
+
:param section_counts: either a list of numbers, or a string containing
|
25 |
+
comma-separated numbers, indicating the step count
|
26 |
+
per section. As a special case, use "ddimN" where N
|
27 |
+
is a number of steps to use the striding from the
|
28 |
+
DDIM paper.
|
29 |
+
:return: a set of diffusion steps from the original process to use.
|
30 |
+
"""
|
31 |
+
if isinstance(section_counts, str):
|
32 |
+
if section_counts.startswith("ddim"):
|
33 |
+
desired_count = int(section_counts[len("ddim") :])
|
34 |
+
for i in range(1, num_timesteps):
|
35 |
+
if len(range(0, num_timesteps, i)) == desired_count:
|
36 |
+
return set(range(0, num_timesteps, i))
|
37 |
+
raise ValueError(
|
38 |
+
f"cannot create exactly {num_timesteps} steps with an integer stride"
|
39 |
+
)
|
40 |
+
section_counts = [int(x) for x in section_counts.split(",")]
|
41 |
+
size_per = num_timesteps // len(section_counts)
|
42 |
+
extra = num_timesteps % len(section_counts)
|
43 |
+
start_idx = 0
|
44 |
+
all_steps = []
|
45 |
+
for i, section_count in enumerate(section_counts):
|
46 |
+
size = size_per + (1 if i < extra else 0)
|
47 |
+
if size < section_count:
|
48 |
+
raise ValueError(
|
49 |
+
f"cannot divide section of {size} steps into {section_count}"
|
50 |
+
)
|
51 |
+
if section_count <= 1:
|
52 |
+
frac_stride = 1
|
53 |
+
else:
|
54 |
+
frac_stride = (size - 1) / (section_count - 1)
|
55 |
+
cur_idx = 0.0
|
56 |
+
taken_steps = []
|
57 |
+
for _ in range(section_count):
|
58 |
+
taken_steps.append(start_idx + round(cur_idx))
|
59 |
+
cur_idx += frac_stride
|
60 |
+
all_steps += taken_steps
|
61 |
+
start_idx += size
|
62 |
+
return set(all_steps)
|
63 |
+
|
64 |
+
|
65 |
+
class SpacedDiffusion(GaussianDiffusion):
|
66 |
+
"""
|
67 |
+
A diffusion process which can skip steps in a base diffusion process.
|
68 |
+
:param use_timesteps: a collection (sequence or set) of timesteps from the
|
69 |
+
original diffusion process to retain.
|
70 |
+
:param kwargs: the kwargs to create the base diffusion process.
|
71 |
+
"""
|
72 |
+
|
73 |
+
def __init__(self, use_timesteps, **kwargs):
|
74 |
+
self.use_timesteps = set(use_timesteps)
|
75 |
+
self.timestep_map = []
|
76 |
+
self.original_num_steps = len(kwargs["betas"])
|
77 |
+
|
78 |
+
base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa
|
79 |
+
last_alpha_cumprod = 1.0
|
80 |
+
new_betas = []
|
81 |
+
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
|
82 |
+
if i in self.use_timesteps:
|
83 |
+
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
|
84 |
+
last_alpha_cumprod = alpha_cumprod
|
85 |
+
self.timestep_map.append(i)
|
86 |
+
kwargs["betas"] = th.tensor(new_betas)
|
87 |
+
super().__init__(**kwargs)
|
88 |
+
|
89 |
+
def p_mean_variance(
|
90 |
+
self, model, *args, **kwargs
|
91 |
+
): # pylint: disable=signature-differs
|
92 |
+
return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
|
93 |
+
|
94 |
+
def training_losses(
|
95 |
+
self, model, *args, **kwargs
|
96 |
+
): # pylint: disable=signature-differs
|
97 |
+
return super().training_losses(self._wrap_model(model), *args, **kwargs)
|
98 |
+
|
99 |
+
def condition_mean(self, cond_fn, *args, **kwargs):
|
100 |
+
return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs)
|
101 |
+
|
102 |
+
def condition_score(self, cond_fn, *args, **kwargs):
|
103 |
+
return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs)
|
104 |
+
|
105 |
+
def _wrap_model(self, model):
|
106 |
+
if isinstance(model, _WrappedModel):
|
107 |
+
return model
|
108 |
+
return _WrappedModel(model, self.timestep_map, self.original_num_steps)
|
109 |
+
|
110 |
+
def _scale_timesteps(self, t):
|
111 |
+
# Scaling is done by the wrapped model.
|
112 |
+
return t
|
113 |
+
|
114 |
+
|
115 |
+
class _WrappedModel:
|
116 |
+
def __init__(self, model, timestep_map, original_num_steps):
|
117 |
+
self.model = model
|
118 |
+
self.timestep_map = timestep_map
|
119 |
+
# self.rescale_timesteps = rescale_timesteps
|
120 |
+
self.original_num_steps = original_num_steps
|
121 |
+
|
122 |
+
def __call__(self, x, ts, **kwargs):
|
123 |
+
map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype)
|
124 |
+
new_ts = map_tensor[ts]
|
125 |
+
# if self.rescale_timesteps:
|
126 |
+
# new_ts = new_ts.float() * (1000.0 / self.original_num_steps)
|
127 |
+
return self.model(x, new_ts, **kwargs)
|
timestep_sampler.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
from abc import ABC, abstractmethod
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch as th
|
10 |
+
import torch.distributed as dist
|
11 |
+
|
12 |
+
|
13 |
+
def create_named_schedule_sampler(name, diffusion):
|
14 |
+
"""
|
15 |
+
Create a ScheduleSampler from a library of pre-defined samplers.
|
16 |
+
:param name: the name of the sampler.
|
17 |
+
:param diffusion: the diffusion object to sample for.
|
18 |
+
"""
|
19 |
+
if name == "uniform":
|
20 |
+
return UniformSampler(diffusion)
|
21 |
+
elif name == "loss-second-moment":
|
22 |
+
return LossSecondMomentResampler(diffusion)
|
23 |
+
else:
|
24 |
+
raise NotImplementedError(f"unknown schedule sampler: {name}")
|
25 |
+
|
26 |
+
|
27 |
+
class ScheduleSampler(ABC):
|
28 |
+
"""
|
29 |
+
A distribution over timesteps in the diffusion process, intended to reduce
|
30 |
+
variance of the objective.
|
31 |
+
By default, samplers perform unbiased importance sampling, in which the
|
32 |
+
objective's mean is unchanged.
|
33 |
+
However, subclasses may override sample() to change how the resampled
|
34 |
+
terms are reweighted, allowing for actual changes in the objective.
|
35 |
+
"""
|
36 |
+
|
37 |
+
@abstractmethod
|
38 |
+
def weights(self):
|
39 |
+
"""
|
40 |
+
Get a numpy array of weights, one per diffusion step.
|
41 |
+
The weights needn't be normalized, but must be positive.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def sample(self, batch_size, device):
|
45 |
+
"""
|
46 |
+
Importance-sample timesteps for a batch.
|
47 |
+
:param batch_size: the number of timesteps.
|
48 |
+
:param device: the torch device to save to.
|
49 |
+
:return: a tuple (timesteps, weights):
|
50 |
+
- timesteps: a tensor of timestep indices.
|
51 |
+
- weights: a tensor of weights to scale the resulting losses.
|
52 |
+
"""
|
53 |
+
w = self.weights()
|
54 |
+
p = w / np.sum(w)
|
55 |
+
indices_np = np.random.choice(len(p), size=(batch_size,), p=p)
|
56 |
+
indices = th.from_numpy(indices_np).long().to(device)
|
57 |
+
weights_np = 1 / (len(p) * p[indices_np])
|
58 |
+
weights = th.from_numpy(weights_np).float().to(device)
|
59 |
+
return indices, weights
|
60 |
+
|
61 |
+
|
62 |
+
class UniformSampler(ScheduleSampler):
|
63 |
+
def __init__(self, diffusion):
|
64 |
+
self.diffusion = diffusion
|
65 |
+
self._weights = np.ones([diffusion.num_timesteps])
|
66 |
+
|
67 |
+
def weights(self):
|
68 |
+
return self._weights
|
69 |
+
|
70 |
+
|
71 |
+
class LossAwareSampler(ScheduleSampler):
|
72 |
+
def update_with_local_losses(self, local_ts, local_losses):
|
73 |
+
"""
|
74 |
+
Update the reweighting using losses from a model.
|
75 |
+
Call this method from each rank with a batch of timesteps and the
|
76 |
+
corresponding losses for each of those timesteps.
|
77 |
+
This method will perform synchronization to make sure all of the ranks
|
78 |
+
maintain the exact same reweighting.
|
79 |
+
:param local_ts: an integer Tensor of timesteps.
|
80 |
+
:param local_losses: a 1D Tensor of losses.
|
81 |
+
"""
|
82 |
+
batch_sizes = [
|
83 |
+
th.tensor([0], dtype=th.int32, device=local_ts.device)
|
84 |
+
for _ in range(dist.get_world_size())
|
85 |
+
]
|
86 |
+
dist.all_gather(
|
87 |
+
batch_sizes,
|
88 |
+
th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device),
|
89 |
+
)
|
90 |
+
|
91 |
+
# Pad all_gather batches to be the maximum batch size.
|
92 |
+
batch_sizes = [x.item() for x in batch_sizes]
|
93 |
+
max_bs = max(batch_sizes)
|
94 |
+
|
95 |
+
timestep_batches = [th.zeros(max_bs).to(local_ts) for bs in batch_sizes]
|
96 |
+
loss_batches = [th.zeros(max_bs).to(local_losses) for bs in batch_sizes]
|
97 |
+
dist.all_gather(timestep_batches, local_ts)
|
98 |
+
dist.all_gather(loss_batches, local_losses)
|
99 |
+
timesteps = [
|
100 |
+
x.item() for y, bs in zip(timestep_batches, batch_sizes) for x in y[:bs]
|
101 |
+
]
|
102 |
+
losses = [x.item() for y, bs in zip(loss_batches, batch_sizes) for x in y[:bs]]
|
103 |
+
self.update_with_all_losses(timesteps, losses)
|
104 |
+
|
105 |
+
@abstractmethod
|
106 |
+
def update_with_all_losses(self, ts, losses):
|
107 |
+
"""
|
108 |
+
Update the reweighting using losses from a model.
|
109 |
+
Sub-classes should override this method to update the reweighting
|
110 |
+
using losses from the model.
|
111 |
+
This method directly updates the reweighting without synchronizing
|
112 |
+
between workers. It is called by update_with_local_losses from all
|
113 |
+
ranks with identical arguments. Thus, it should have deterministic
|
114 |
+
behavior to maintain state across workers.
|
115 |
+
:param ts: a list of int timesteps.
|
116 |
+
:param losses: a list of float losses, one per timestep.
|
117 |
+
"""
|
118 |
+
|
119 |
+
|
120 |
+
class LossSecondMomentResampler(LossAwareSampler):
|
121 |
+
def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001):
|
122 |
+
self.diffusion = diffusion
|
123 |
+
self.history_per_term = history_per_term
|
124 |
+
self.uniform_prob = uniform_prob
|
125 |
+
self._loss_history = np.zeros(
|
126 |
+
[diffusion.num_timesteps, history_per_term], dtype=np.float64
|
127 |
+
)
|
128 |
+
self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int)
|
129 |
+
|
130 |
+
def weights(self):
|
131 |
+
if not self._warmed_up():
|
132 |
+
return np.ones([self.diffusion.num_timesteps], dtype=np.float64)
|
133 |
+
weights = np.sqrt(np.mean(self._loss_history**2, axis=-1))
|
134 |
+
weights /= np.sum(weights)
|
135 |
+
weights *= 1 - self.uniform_prob
|
136 |
+
weights += self.uniform_prob / len(weights)
|
137 |
+
return weights
|
138 |
+
|
139 |
+
def update_with_all_losses(self, ts, losses):
|
140 |
+
for t, loss in zip(ts, losses):
|
141 |
+
if self._loss_counts[t] == self.history_per_term:
|
142 |
+
# Shift out the oldest loss term.
|
143 |
+
self._loss_history[t, :-1] = self._loss_history[t, 1:]
|
144 |
+
self._loss_history[t, -1] = loss
|
145 |
+
else:
|
146 |
+
self._loss_history[t, self._loss_counts[t]] = loss
|
147 |
+
self._loss_counts[t] += 1
|
148 |
+
|
149 |
+
def _warmed_up(self):
|
150 |
+
return (self._loss_counts == self.history_per_term).all()
|
uv.lock
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
version = 1
|
2 |
requires-python = ">=3.12"
|
3 |
resolution-markers = [
|
4 |
-
"python_full_version < '3.13'",
|
5 |
-
"python_full_version
|
|
|
|
|
6 |
]
|
7 |
|
8 |
[[package]]
|
@@ -188,7 +190,8 @@ dependencies = [
|
|
188 |
{ name = "gradio" },
|
189 |
{ name = "nltk" },
|
190 |
{ name = "soundfile" },
|
191 |
-
{ name = "torch" },
|
|
|
192 |
{ name = "vocos" },
|
193 |
]
|
194 |
|
@@ -198,7 +201,8 @@ requires-dist = [
|
|
198 |
{ name = "gradio", specifier = ">=5.9.1" },
|
199 |
{ name = "nltk", specifier = ">=3.9.1" },
|
200 |
{ name = "soundfile", specifier = ">=0.12.1" },
|
201 |
-
{ name = "torch", specifier = ">=2.5.1" },
|
|
|
202 |
{ name = "vocos", specifier = ">=0.1.0" },
|
203 |
]
|
204 |
|
@@ -224,7 +228,8 @@ source = { registry = "https://pypi.org/simple" }
|
|
224 |
dependencies = [
|
225 |
{ name = "einops" },
|
226 |
{ name = "numpy" },
|
227 |
-
{ name = "torch" },
|
|
|
228 |
{ name = "torchaudio" },
|
229 |
]
|
230 |
sdist = { url = "https://files.pythonhosted.org/packages/62/59/e47bbd0542d0e6f4ce9983d5eb458a01d4b42c81e5c410cb9e159b1061ae/encodec-0.1.1.tar.gz", hash = "sha256:36dde98ccfe6c51a15576476cadfcb3b35a63507b8b8555abd69889a6fba6772", size = 3736037 }
|
@@ -598,7 +603,7 @@ name = "nvidia-cudnn-cu12"
|
|
598 |
version = "9.1.0.70"
|
599 |
source = { registry = "https://pypi.org/simple" }
|
600 |
dependencies = [
|
601 |
-
{ name = "nvidia-cublas-cu12" },
|
602 |
]
|
603 |
wheels = [
|
604 |
{ url = "https://files.pythonhosted.org/packages/9f/fd/713452cd72343f682b1c7b9321e23829f00b842ceaedcda96e742ea0b0b3/nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f", size = 664752741 },
|
@@ -609,7 +614,7 @@ name = "nvidia-cufft-cu12"
|
|
609 |
version = "11.2.1.3"
|
610 |
source = { registry = "https://pypi.org/simple" }
|
611 |
dependencies = [
|
612 |
-
{ name = "nvidia-nvjitlink-cu12" },
|
613 |
]
|
614 |
wheels = [
|
615 |
{ url = "https://files.pythonhosted.org/packages/7a/8a/0e728f749baca3fbeffad762738276e5df60851958be7783af121a7221e7/nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5dad8008fc7f92f5ddfa2101430917ce2ffacd86824914c82e28990ad7f00399", size = 211422548 },
|
@@ -630,9 +635,9 @@ name = "nvidia-cusolver-cu12"
|
|
630 |
version = "11.6.1.9"
|
631 |
source = { registry = "https://pypi.org/simple" }
|
632 |
dependencies = [
|
633 |
-
{ name = "nvidia-cublas-cu12" },
|
634 |
-
{ name = "nvidia-cusparse-cu12" },
|
635 |
-
{ name = "nvidia-nvjitlink-cu12" },
|
636 |
]
|
637 |
wheels = [
|
638 |
{ url = "https://files.pythonhosted.org/packages/46/6b/a5c33cf16af09166845345275c34ad2190944bcc6026797a39f8e0a282e0/nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_aarch64.whl", hash = "sha256:d338f155f174f90724bbde3758b7ac375a70ce8e706d70b018dd3375545fc84e", size = 127634111 },
|
@@ -644,7 +649,7 @@ name = "nvidia-cusparse-cu12"
|
|
644 |
version = "12.3.1.170"
|
645 |
source = { registry = "https://pypi.org/simple" }
|
646 |
dependencies = [
|
647 |
-
{ name = "nvidia-nvjitlink-cu12" },
|
648 |
]
|
649 |
wheels = [
|
650 |
{ url = "https://files.pythonhosted.org/packages/96/a9/c0d2f83a53d40a4a41be14cea6a0bf9e668ffcf8b004bd65633f433050c0/nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_aarch64.whl", hash = "sha256:9d32f62896231ebe0480efd8a7f702e143c98cfaa0e8a76df3386c1ba2b54df3", size = 207381987 },
|
@@ -1153,12 +1158,16 @@ wheels = [
|
|
1153 |
[[package]]
|
1154 |
name = "torch"
|
1155 |
version = "2.5.1"
|
1156 |
-
source = { registry = "https://
|
|
|
|
|
|
|
|
|
1157 |
dependencies = [
|
1158 |
-
{ name = "filelock" },
|
1159 |
-
{ name = "fsspec" },
|
1160 |
-
{ name = "jinja2" },
|
1161 |
-
{ name = "networkx" },
|
1162 |
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1163 |
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1164 |
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
@@ -1171,17 +1180,33 @@ dependencies = [
|
|
1171 |
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1172 |
{ name = "nvidia-nvjitlink-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1173 |
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1174 |
-
{ name = "setuptools" },
|
1175 |
-
{ name = "sympy" },
|
1176 |
-
{ name = "
|
1177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1178 |
]
|
1179 |
wheels = [
|
1180 |
-
{ url = "https://files.pythonhosted.org/packages/8b/5c/36c114d120bfe10f9323ed35061bc5878cc74f3f594003854b0ea298942f/torch-2.5.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:ed231a4b3a5952177fafb661213d690a72caaad97d5824dd4fc17ab9e15cec03", size = 906389343 },
|
1181 |
-
{ url = "https://files.pythonhosted.org/packages/6d/69/d8ada8b6e0a4257556d5b4ddeb4345ea8eeaaef3c98b60d1cca197c7ad8e/torch-2.5.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:3f4b7f10a247e0dcd7ea97dc2d3bfbfc90302ed36d7f3952b0008d0df264e697", size = 91811673 },
|
1182 |
-
{ url = "https://files.pythonhosted.org/packages/5f/ba/607d013b55b9fd805db2a5c2662ec7551f1910b4eef39653eeaba182c5b2/torch-2.5.1-cp312-cp312-win_amd64.whl", hash = "sha256:73e58e78f7d220917c5dbfad1a40e09df9929d3b95d25e57d9f8558f84c9a11c", size = 203046841 },
|
1183 |
{ url = "https://files.pythonhosted.org/packages/57/6c/bf52ff061da33deb9f94f4121fde7ff3058812cb7d2036c97bc167793bd1/torch-2.5.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:8c712df61101964eb11910a846514011f0b6f5920c55dbf567bff8a34163d5b1", size = 63858109 },
|
1184 |
-
{ url = "https://files.pythonhosted.org/packages/69/72/20cb30f3b39a9face296491a86adb6ff8f1a47a897e4d14667e6cf89d5c3/torch-2.5.1-cp313-cp313-manylinux1_x86_64.whl", hash = "sha256:9b61edf3b4f6e3b0e0adda8b3960266b9009d02b37555971f4d1c8f7a05afed7", size = 906393265 },
|
1185 |
]
|
1186 |
|
1187 |
[[package]]
|
@@ -1189,7 +1214,8 @@ name = "torchaudio"
|
|
1189 |
version = "2.5.1"
|
1190 |
source = { registry = "https://pypi.org/simple" }
|
1191 |
dependencies = [
|
1192 |
-
{ name = "torch" },
|
|
|
1193 |
]
|
1194 |
wheels = [
|
1195 |
{ url = "https://files.pythonhosted.org/packages/03/ab/151037a41e2cf4a5d489dfe5e7196b755e0fd83958d5ca7ad8ed85afcb1c/torchaudio-2.5.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f1cbfdfd1bbdfbe7289d47a74f36ff6c5d87c3205606202fef5a7fb693f61cf0", size = 1798042 },
|
@@ -1210,17 +1236,6 @@ wheels = [
|
|
1210 |
{ url = "https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl", hash = "sha256:26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2", size = 78540 },
|
1211 |
]
|
1212 |
|
1213 |
-
[[package]]
|
1214 |
-
name = "triton"
|
1215 |
-
version = "3.1.0"
|
1216 |
-
source = { registry = "https://pypi.org/simple" }
|
1217 |
-
dependencies = [
|
1218 |
-
{ name = "filelock", marker = "python_full_version < '3.13'" },
|
1219 |
-
]
|
1220 |
-
wheels = [
|
1221 |
-
{ url = "https://files.pythonhosted.org/packages/78/eb/65f5ba83c2a123f6498a3097746607e5b2f16add29e36765305e4ac7fdd8/triton-3.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c8182f42fd8080a7d39d666814fa36c5e30cc00ea7eeeb1a2983dbb4c99a0fdc", size = 209551444 },
|
1222 |
-
]
|
1223 |
-
|
1224 |
[[package]]
|
1225 |
name = "typeguard"
|
1226 |
version = "4.4.1"
|
@@ -1299,7 +1314,8 @@ dependencies = [
|
|
1299 |
{ name = "numpy" },
|
1300 |
{ name = "pyyaml" },
|
1301 |
{ name = "scipy" },
|
1302 |
-
{ name = "torch" },
|
|
|
1303 |
{ name = "torchaudio" },
|
1304 |
]
|
1305 |
sdist = { url = "https://files.pythonhosted.org/packages/db/48/1e4d3a4a97292e47ebaa18e3eae6ecb2f57bde47693ccab0e7acb23f9ffe/vocos-0.1.0.tar.gz", hash = "sha256:b488224dbe398ff7d4790a027ad659478b4bc02e465db992c62c12b32ca043d8", size = 21107 }
|
|
|
1 |
version = 1
|
2 |
requires-python = ">=3.12"
|
3 |
resolution-markers = [
|
4 |
+
"python_full_version < '3.13' and platform_system != 'Darwin'",
|
5 |
+
"python_full_version < '3.13' and platform_system == 'Darwin'",
|
6 |
+
"python_full_version >= '3.13' and platform_system != 'Darwin'",
|
7 |
+
"python_full_version >= '3.13' and platform_system == 'Darwin'",
|
8 |
]
|
9 |
|
10 |
[[package]]
|
|
|
190 |
{ name = "gradio" },
|
191 |
{ name = "nltk" },
|
192 |
{ name = "soundfile" },
|
193 |
+
{ name = "torch", version = "2.5.1", source = { registry = "https://download.pytorch.org/whl/cpu" }, marker = "platform_system != 'Darwin'" },
|
194 |
+
{ name = "torch", version = "2.5.1", source = { registry = "https://pypi.org/simple" }, marker = "platform_system == 'Darwin'" },
|
195 |
{ name = "vocos" },
|
196 |
]
|
197 |
|
|
|
201 |
{ name = "gradio", specifier = ">=5.9.1" },
|
202 |
{ name = "nltk", specifier = ">=3.9.1" },
|
203 |
{ name = "soundfile", specifier = ">=0.12.1" },
|
204 |
+
{ name = "torch", marker = "platform_system != 'Darwin'", specifier = ">=2.5.1", index = "https://download.pytorch.org/whl/cpu" },
|
205 |
+
{ name = "torch", marker = "platform_system == 'Darwin'", specifier = ">=2.5.1" },
|
206 |
{ name = "vocos", specifier = ">=0.1.0" },
|
207 |
]
|
208 |
|
|
|
228 |
dependencies = [
|
229 |
{ name = "einops" },
|
230 |
{ name = "numpy" },
|
231 |
+
{ name = "torch", version = "2.5.1", source = { registry = "https://download.pytorch.org/whl/cpu" }, marker = "platform_system != 'Darwin'" },
|
232 |
+
{ name = "torch", version = "2.5.1", source = { registry = "https://pypi.org/simple" }, marker = "platform_system == 'Darwin'" },
|
233 |
{ name = "torchaudio" },
|
234 |
]
|
235 |
sdist = { url = "https://files.pythonhosted.org/packages/62/59/e47bbd0542d0e6f4ce9983d5eb458a01d4b42c81e5c410cb9e159b1061ae/encodec-0.1.1.tar.gz", hash = "sha256:36dde98ccfe6c51a15576476cadfcb3b35a63507b8b8555abd69889a6fba6772", size = 3736037 }
|
|
|
603 |
version = "9.1.0.70"
|
604 |
source = { registry = "https://pypi.org/simple" }
|
605 |
dependencies = [
|
606 |
+
{ name = "nvidia-cublas-cu12", marker = "platform_system != 'Darwin'" },
|
607 |
]
|
608 |
wheels = [
|
609 |
{ url = "https://files.pythonhosted.org/packages/9f/fd/713452cd72343f682b1c7b9321e23829f00b842ceaedcda96e742ea0b0b3/nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f", size = 664752741 },
|
|
|
614 |
version = "11.2.1.3"
|
615 |
source = { registry = "https://pypi.org/simple" }
|
616 |
dependencies = [
|
617 |
+
{ name = "nvidia-nvjitlink-cu12", marker = "platform_system != 'Darwin'" },
|
618 |
]
|
619 |
wheels = [
|
620 |
{ url = "https://files.pythonhosted.org/packages/7a/8a/0e728f749baca3fbeffad762738276e5df60851958be7783af121a7221e7/nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5dad8008fc7f92f5ddfa2101430917ce2ffacd86824914c82e28990ad7f00399", size = 211422548 },
|
|
|
635 |
version = "11.6.1.9"
|
636 |
source = { registry = "https://pypi.org/simple" }
|
637 |
dependencies = [
|
638 |
+
{ name = "nvidia-cublas-cu12", marker = "platform_system != 'Darwin'" },
|
639 |
+
{ name = "nvidia-cusparse-cu12", marker = "platform_system != 'Darwin'" },
|
640 |
+
{ name = "nvidia-nvjitlink-cu12", marker = "platform_system != 'Darwin'" },
|
641 |
]
|
642 |
wheels = [
|
643 |
{ url = "https://files.pythonhosted.org/packages/46/6b/a5c33cf16af09166845345275c34ad2190944bcc6026797a39f8e0a282e0/nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_aarch64.whl", hash = "sha256:d338f155f174f90724bbde3758b7ac375a70ce8e706d70b018dd3375545fc84e", size = 127634111 },
|
|
|
649 |
version = "12.3.1.170"
|
650 |
source = { registry = "https://pypi.org/simple" }
|
651 |
dependencies = [
|
652 |
+
{ name = "nvidia-nvjitlink-cu12", marker = "platform_system != 'Darwin'" },
|
653 |
]
|
654 |
wheels = [
|
655 |
{ url = "https://files.pythonhosted.org/packages/96/a9/c0d2f83a53d40a4a41be14cea6a0bf9e668ffcf8b004bd65633f433050c0/nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_aarch64.whl", hash = "sha256:9d32f62896231ebe0480efd8a7f702e143c98cfaa0e8a76df3386c1ba2b54df3", size = 207381987 },
|
|
|
1158 |
[[package]]
|
1159 |
name = "torch"
|
1160 |
version = "2.5.1"
|
1161 |
+
source = { registry = "https://download.pytorch.org/whl/cpu" }
|
1162 |
+
resolution-markers = [
|
1163 |
+
"python_full_version < '3.13' and platform_system != 'Darwin'",
|
1164 |
+
"python_full_version >= '3.13' and platform_system != 'Darwin'",
|
1165 |
+
]
|
1166 |
dependencies = [
|
1167 |
+
{ name = "filelock", marker = "platform_system != 'Darwin'" },
|
1168 |
+
{ name = "fsspec", marker = "platform_system != 'Darwin'" },
|
1169 |
+
{ name = "jinja2", marker = "platform_system != 'Darwin'" },
|
1170 |
+
{ name = "networkx", marker = "platform_system != 'Darwin'" },
|
1171 |
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1172 |
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1173 |
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
|
|
1180 |
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1181 |
{ name = "nvidia-nvjitlink-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1182 |
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1183 |
+
{ name = "setuptools", marker = "platform_system != 'Darwin'" },
|
1184 |
+
{ name = "sympy", marker = "platform_system != 'Darwin'" },
|
1185 |
+
{ name = "typing-extensions", marker = "platform_system != 'Darwin'" },
|
1186 |
+
]
|
1187 |
+
wheels = [
|
1188 |
+
{ url = "https://download.pytorch.org/whl/cpu/torch-2.5.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36d1be99281b6f602d9639bd0af3ee0006e7aab16f6718d86f709d395b6f262c" },
|
1189 |
+
]
|
1190 |
+
|
1191 |
+
[[package]]
|
1192 |
+
name = "torch"
|
1193 |
+
version = "2.5.1"
|
1194 |
+
source = { registry = "https://pypi.org/simple" }
|
1195 |
+
resolution-markers = [
|
1196 |
+
"python_full_version < '3.13' and platform_system == 'Darwin'",
|
1197 |
+
"python_full_version >= '3.13' and platform_system == 'Darwin'",
|
1198 |
+
]
|
1199 |
+
dependencies = [
|
1200 |
+
{ name = "filelock", marker = "platform_system == 'Darwin'" },
|
1201 |
+
{ name = "fsspec", marker = "platform_system == 'Darwin'" },
|
1202 |
+
{ name = "jinja2", marker = "platform_system == 'Darwin'" },
|
1203 |
+
{ name = "networkx", marker = "platform_system == 'Darwin'" },
|
1204 |
+
{ name = "setuptools", marker = "platform_system == 'Darwin'" },
|
1205 |
+
{ name = "sympy", marker = "platform_system == 'Darwin'" },
|
1206 |
+
{ name = "typing-extensions", marker = "platform_system == 'Darwin'" },
|
1207 |
]
|
1208 |
wheels = [
|
|
|
|
|
|
|
1209 |
{ url = "https://files.pythonhosted.org/packages/57/6c/bf52ff061da33deb9f94f4121fde7ff3058812cb7d2036c97bc167793bd1/torch-2.5.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:8c712df61101964eb11910a846514011f0b6f5920c55dbf567bff8a34163d5b1", size = 63858109 },
|
|
|
1210 |
]
|
1211 |
|
1212 |
[[package]]
|
|
|
1214 |
version = "2.5.1"
|
1215 |
source = { registry = "https://pypi.org/simple" }
|
1216 |
dependencies = [
|
1217 |
+
{ name = "torch", version = "2.5.1", source = { registry = "https://download.pytorch.org/whl/cpu" }, marker = "platform_system != 'Darwin'" },
|
1218 |
+
{ name = "torch", version = "2.5.1", source = { registry = "https://pypi.org/simple" }, marker = "platform_system == 'Darwin'" },
|
1219 |
]
|
1220 |
wheels = [
|
1221 |
{ url = "https://files.pythonhosted.org/packages/03/ab/151037a41e2cf4a5d489dfe5e7196b755e0fd83958d5ca7ad8ed85afcb1c/torchaudio-2.5.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f1cbfdfd1bbdfbe7289d47a74f36ff6c5d87c3205606202fef5a7fb693f61cf0", size = 1798042 },
|
|
|
1236 |
{ url = "https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl", hash = "sha256:26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2", size = 78540 },
|
1237 |
]
|
1238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1239 |
[[package]]
|
1240 |
name = "typeguard"
|
1241 |
version = "4.4.1"
|
|
|
1314 |
{ name = "numpy" },
|
1315 |
{ name = "pyyaml" },
|
1316 |
{ name = "scipy" },
|
1317 |
+
{ name = "torch", version = "2.5.1", source = { registry = "https://download.pytorch.org/whl/cpu" }, marker = "platform_system != 'Darwin'" },
|
1318 |
+
{ name = "torch", version = "2.5.1", source = { registry = "https://pypi.org/simple" }, marker = "platform_system == 'Darwin'" },
|
1319 |
{ name = "torchaudio" },
|
1320 |
]
|
1321 |
sdist = { url = "https://files.pythonhosted.org/packages/db/48/1e4d3a4a97292e47ebaa18e3eae6ecb2f57bde47693ccab0e7acb23f9ffe/vocos-0.1.0.tar.gz", hash = "sha256:b488224dbe398ff7d4790a027ad659478b4bc02e465db992c62c12b32ca043d8", size = 21107 }
|