Spaces:
Running
Running
| /* | |
| WaveGRU: | |
| > Embed > GRU > O1 > O2 > Sampling > ... | |
| */ | |
| namespace py = pybind11; | |
| using namespace std; | |
| using fvec = std::vector<float>; | |
| using ivec = std::vector<int>; | |
| using fndarray = py::array_t<float>; | |
| using indarray = py::array_t<int>; | |
| using mat = csrblocksparse::CsrBlockSparseMatrix<float, float, int16_t>; | |
| using vec = csrblocksparse::CacheAlignedVector<float>; | |
| using masked_mat = csrblocksparse::MaskedSparseMatrix<float>; | |
| mat create_mat(int h, int w) { | |
| auto m = masked_mat(w, h, 0.90, 4, 4, 0.0, true); | |
| auto a = mat(m); | |
| return a; | |
| } | |
| struct WaveGRU { | |
| int hidden_dim; | |
| int repeat_factor; | |
| mat m; | |
| vec b; | |
| vec z, r, hh, zrh; | |
| vec fco1, fco2; | |
| vec o1b, o2b; | |
| vec t; | |
| vec h; | |
| vec logits; | |
| mat o1, o2; | |
| std::vector<vec> embed; | |
| WaveGRU(int hidden_dim, int repeat_factor) | |
| : hidden_dim(hidden_dim), | |
| repeat_factor(repeat_factor), | |
| b(3*hidden_dim), | |
| t(3*hidden_dim), | |
| zrh(3*hidden_dim), | |
| z(hidden_dim), | |
| r(hidden_dim), | |
| hh(hidden_dim), | |
| fco1(hidden_dim), | |
| fco2(256), | |
| h(hidden_dim), | |
| o1b(hidden_dim), | |
| o2b(256), | |
| logits(256) { | |
| m = create_mat(hidden_dim, 3*hidden_dim); | |
| o1 = create_mat(hidden_dim, hidden_dim); | |
| o2 = create_mat(hidden_dim, 256); | |
| embed = std::vector<vec>(); | |
| for (int i = 0; i < 256; i++) { | |
| embed.emplace_back(hidden_dim * 3); | |
| embed[i].FillRandom(); | |
| } | |
| } | |
| void load_embed(fndarray embed_weights) { | |
| auto a_embed = embed_weights.unchecked<2>(); | |
| for (int i = 0; i < 256; i++) { | |
| for (int j = 0; j < hidden_dim * 3; j++) embed[i][j] = a_embed(i, j); | |
| } | |
| } | |
| mat load_linear(vec& bias, fndarray w, indarray mask, fndarray b) { | |
| auto w_ptr = static_cast<float*>(w.request().ptr); | |
| auto mask_ptr = static_cast<int*>(mask.request().ptr); | |
| auto rb = b.unchecked<1>(); | |
| // load bias, scale by 1/4 | |
| for (int i = 0; i < rb.shape(0); i++) bias[i] = rb(i) / 4; | |
| // load weights | |
| masked_mat mm(w.shape(0), w.shape(1), mask_ptr, w_ptr); | |
| mat mmm(mm); | |
| return mmm; | |
| } | |
| void load_weights(fndarray m, indarray m_mask, fndarray b, | |
| fndarray o1, indarray o1_mask, | |
| fndarray o1b, fndarray o2, | |
| indarray o2_mask, fndarray o2b) { | |
| this->m = load_linear(this->b, m, m_mask, b); | |
| this->o1 = load_linear(this->o1b, o1, o1_mask, o1b); | |
| this->o2 = load_linear(this->o2b, o2, o2_mask, o2b); | |
| } | |
| std::vector<int> inference(fndarray ft, float temperature) { | |
| auto rft = ft.unchecked<2>(); | |
| int value = 127; | |
| std::vector<int> signal(rft.shape(0) * repeat_factor); | |
| h.FillZero(); | |
| for (int index = 0; index < signal.size(); index++) { | |
| m.SpMM_bias(h, b, &zrh, false); | |
| for (int i = 0; i < 3 * hidden_dim; i++) t[i] = embed[value][i] + rft(index / repeat_factor, i); | |
| for (int i = 0; i < hidden_dim; i++) { | |
| z[i] = zrh[i] + t[i]; | |
| r[i] = zrh[hidden_dim + i] + t[hidden_dim + i]; | |
| } | |
| z.Sigmoid(); | |
| r.Sigmoid(); | |
| for (int i = 0; i < hidden_dim; i++) { | |
| hh[i] = zrh[hidden_dim * 2 + i] * r[i] + t[hidden_dim * 2 + i]; | |
| } | |
| hh.Tanh(); | |
| for (int i = 0; i < hidden_dim; i++) { | |
| h[i] = (1. - z[i]) * h[i] + z[i] * hh[i]; | |
| } | |
| o1.SpMM_bias(h, o1b, &fco1, true); | |
| o2.SpMM_bias(fco1, o2b, &fco2, false); | |
| // auto max_logit = fco2[0]; | |
| // for (int i = 1; i <= 255; ++i) { | |
| // max_logit = max(max_logit, fco2[i]); | |
| // } | |
| // float total = 0.0; | |
| // for (int i = 0; i <= 255; ++i) { | |
| // logits[i] = csrblocksparse::fast_exp(fco2[i] - max_logit); | |
| // total += logits[i]; | |
| // } | |
| // for (int i = 0; i <= 255; ++i) { | |
| // if (logits[i] < total / 1024.0) fco2[i] = -1e9; | |
| // } | |
| value = fco2.Sample(temperature); | |
| signal[index] = value; | |
| } | |
| return signal; | |
| } | |
| }; | |
| PYBIND11_MODULE(wavegru_mod, m) { | |
| py::class_<WaveGRU>(m, "WaveGRU") | |
| .def(py::init<int, int>()) | |
| .def("load_embed", &WaveGRU::load_embed) | |
| .def("load_weights", &WaveGRU::load_weights) | |
| .def("inference", &WaveGRU::inference); | |
| } | |