Truong-Phuc Nguyen
commited on
Commit
•
a3a53e1
1
Parent(s):
35d09c3
Upload 9 files
Browse filesVietnamese Woman Bra Size Classifier by n.t.phuc149
Version: v1.0
- .streamlit/config.toml +1 -0
- Models/21/ANNs_full.h5 +3 -0
- Models/21/scaler.pkl +3 -0
- Models/6/scaler.pkl +3 -0
- Models/6/svc_fs_tune.pkl +3 -0
- Models/8/ANNs_8base.h5 +3 -0
- Models/8/scaler.pkl +3 -0
- app.py +169 -0
- requirements.txt +5 -0
.streamlit/config.toml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[theme]
|
Models/21/ANNs_full.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2171b1124533345a97d16e6a4c7175d14f4a30c68e4f7d2d88e0ee7bebe99d1
|
3 |
+
size 2151608
|
Models/21/scaler.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bba338e5a9e948bcb24eeae5564b38b3f357ddf003b319120b4d9e805049247
|
3 |
+
size 1167
|
Models/6/scaler.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:112f1f7423b966cb0262c61e3cfe06bb587fbc8a4573f120e025137d2fa219cf
|
3 |
+
size 842
|
Models/6/svc_fs_tune.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbcd2543e3b001c0463ae9287023bd4ddfb7fe4309359aec1fa458040b2f32c8
|
3 |
+
size 25810
|
Models/8/ANNs_8base.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec6d4f39c2b589d0d9b7d9f9a7c4d20f257d5fbb298d2257f720c63d073728d0
|
3 |
+
size 2075968
|
Models/8/scaler.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72a59613ba32e5f133a958bd1bd30770b992ad45f9e48ebee0c37a90997fd2e7
|
3 |
+
size 777
|
app.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import numpy as np
|
3 |
+
import streamlit as st
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
|
6 |
+
def load_essential_models(scaler_6_path, scaler_8_path, scaler_full_path, clf_6_path, clf_8_path, clf_full_path):
|
7 |
+
scaler_6 = pickle.load(open(file=scaler_6_path, mode='rb'))
|
8 |
+
scaler_8 = pickle.load(open(file=scaler_8_path, mode='rb'))
|
9 |
+
scaler_21 = pickle.load(open(file=scaler_full_path, mode='rb'))
|
10 |
+
clf_6 = pickle.load(open(file=clf_6_path, mode='rb'))
|
11 |
+
clf_8 = load_model(clf_8_path)
|
12 |
+
clf_21 = load_model(clf_full_path)
|
13 |
+
return scaler_6, scaler_8, scaler_21, clf_6, clf_8, clf_21
|
14 |
+
|
15 |
+
scaler_6, scaler_8, scaler_21, clf_6, clf_8, clf_21 = load_essential_models(scaler_6_path='./Models/6/scaler.pkl', scaler_8_path='./Models/8/scaler.pkl', scaler_full_path='./Models/21/scaler.pkl', clf_6_path='./Models/6/svc_fs_tune.pkl', clf_8_path='./Models/8/ANNs_8base.h5', clf_full_path='./Models/21/ANNs_full.h5')
|
16 |
+
|
17 |
+
st.title('Demo System for Vietnamese Woman Bra Size Classifier')
|
18 |
+
|
19 |
+
header_col_1, header_col_2 = st.columns([3, 2])
|
20 |
+
num_of_features = header_col_1.selectbox(label='Please select the number of measurements you have:', options=['6 measurements', '8 measurements', '21 measurements'])
|
21 |
+
|
22 |
+
h, w, bmi, vtn, vn, vcn, cn, cnnp, cnnt, cntp, cntt, ccnp, ccnt, snt, sndp, sndt, xup, xut, cl, ttp, ttt = [0.0]*21
|
23 |
+
|
24 |
+
if num_of_features == '6 measurements':
|
25 |
+
sample_options_6 = header_col_2.selectbox(label='Sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)'])
|
26 |
+
container_col_1, container_col_2, container_col_3 = st.columns([1, 1, 1])
|
27 |
+
if sample_options_6 == 'Sample 1 (Small)':
|
28 |
+
vtn = container_col_1.number_input(label='Your vtn: ', value=82.00, min_value=0.00, step=0.01)
|
29 |
+
vn = container_col_2.number_input(label='Your vn:', value=82.40, min_value=0.00, step=0.01)
|
30 |
+
vcn = container_col_3.number_input(label='Your vcn:', value=73.10, min_value=0.00, step=0.01)
|
31 |
+
cl = container_col_1.number_input(label='Your cl:', value=9.30, min_value=0.00, step=0.01)
|
32 |
+
ttp = container_col_2.number_input(label='Your ttp:', value=325.6, min_value=0.00, step=0.01)
|
33 |
+
ttt = container_col_3.number_input(label='Your ttt:', value=325.6, min_value=0.00, step=0.01)
|
34 |
+
elif sample_options_6 == 'Sample 2 (Medium)':
|
35 |
+
vtn = container_col_1.number_input(label='Your vtn: ', value=77.20, min_value=0.00, step=0.01)
|
36 |
+
vn = container_col_2.number_input(label='Your vn:', value=78.60, min_value=0.00, step=0.01)
|
37 |
+
vcn = container_col_3.number_input(label='Your vcn:', value=66.50, min_value=0.00, step=0.01)
|
38 |
+
cl = container_col_1.number_input(label='Your cl:', value=12.10, min_value=0.00, step=0.01)
|
39 |
+
ttp = container_col_2.number_input(label='Your ttp:', value=388.80, min_value=0.00, step=0.01)
|
40 |
+
ttt = container_col_3.number_input(label='Your ttt:', value=324.60, min_value=0.00, step=0.01)
|
41 |
+
else:
|
42 |
+
vtn = container_col_1.number_input(label='Your vtn: ', value=86.50, min_value=0.00, step=0.01)
|
43 |
+
vn = container_col_2.number_input(label='Your vn:', value=88.00, min_value=0.00, step=0.01)
|
44 |
+
vcn = container_col_3.number_input(label='Your vcn:', value=74.00, min_value=0.00, step=0.01)
|
45 |
+
cl = container_col_1.number_input(label='Your cl:', value=14.00, min_value=0.00, step=0.01)
|
46 |
+
ttp = container_col_2.number_input(label='Your ttp:', value=451.30, min_value=0.00, step=0.01)
|
47 |
+
ttt = container_col_3.number_input(label='Your ttt:', value=471.60, min_value=0.00, step=0.01)
|
48 |
+
|
49 |
+
elif num_of_features == '8 measurements':
|
50 |
+
sample_options_8 = header_col_2.selectbox(label='Sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)'])
|
51 |
+
container_col_1, container_col_2, container_col_3, container_col_4 = st.columns([1, 1, 1, 1])
|
52 |
+
if sample_options_8 == 'Sample 1 (Small)':
|
53 |
+
ttp = container_col_1.number_input(label='Your ttp:', value=325.10, min_value=0.00, step=0.01)
|
54 |
+
cl = container_col_2.number_input(label='Your cl:', value=8.90, min_value=0.00, step=0.01)
|
55 |
+
cnnp = container_col_3.number_input(label='Your cnnp:', value=12.30, min_value=0.00, step=0.01)
|
56 |
+
vn = container_col_4.number_input(label='Your vn:', value=83.20, min_value=0.00, step=0.01)
|
57 |
+
vtn = container_col_1.number_input(label='Your vtn: ', value=80.10, min_value=0.00, step=0.01)
|
58 |
+
ccnt = container_col_2.number_input(label='Your ccnt:', value=11.10, min_value=0.00, step=0.01)
|
59 |
+
cntp = container_col_3.number_input(label='Your cntp:', value=8.70, min_value=0.00, step=0.01)
|
60 |
+
vcn = container_col_4.number_input(label='Your vcn:', value=74.30, min_value=0.00, step=0.01)
|
61 |
+
elif sample_options_8 == 'Sample 2 (Medium)':
|
62 |
+
ttp = container_col_1.number_input(label='Your ttp:', value=385.80, min_value=0.00, step=0.01)
|
63 |
+
cl = container_col_2.number_input(label='Your cl:', value=13.60, min_value=0.00, step=0.01)
|
64 |
+
cnnp = container_col_3.number_input(label='Your cnnp:', value=8.80, min_value=0.00, step=0.01)
|
65 |
+
vn = container_col_4.number_input(label='Your vn:', value=83.20, min_value=0.00, step=0.01)
|
66 |
+
vtn = container_col_1.number_input(label='Your vtn: ', value=82.50, min_value=0.00, step=0.01)
|
67 |
+
ccnt = container_col_2.number_input(label='Your ccnt:', value=9.30, min_value=0.00, step=0.01)
|
68 |
+
cntp = container_col_3.number_input(label='Your cntp:', value=9.10, min_value=0.00, step=0.01)
|
69 |
+
vcn = container_col_4.number_input(label='Your vcn:', value=69.60, min_value=0.00, step=0.01)
|
70 |
+
else:
|
71 |
+
ttp = container_col_1.number_input(label='Your ttp:', value=453.30, min_value=0.00, step=0.01)
|
72 |
+
cl = container_col_2.number_input(label='Your cl:', value=13.00, min_value=0.00, step=0.01)
|
73 |
+
cnnp = container_col_3.number_input(label='Your cnnp:', value=12.50, min_value=0.00, step=0.01)
|
74 |
+
vn = container_col_4.number_input(label='Your vn:', value=85.30, min_value=0.00, step=0.01)
|
75 |
+
vtn = container_col_1.number_input(label='Your vtn: ', value=78.50, min_value=0.00, step=0.01)
|
76 |
+
ccnt = container_col_2.number_input(label='Your ccnt:', value=12.40, min_value=0.00, step=0.01)
|
77 |
+
cntp = container_col_3.number_input(label='Your cntp:', value=10.00, min_value=0.00, step=0.01)
|
78 |
+
vcn = container_col_4.number_input(label='Your vcn:', value=72.30, min_value=0.00, step=0.01)
|
79 |
+
else:
|
80 |
+
sample_options_21 = header_col_2.selectbox(label='Sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)'])
|
81 |
+
container_col_1, container_col_2, container_col_3, container_col_4, container_col_5 = st.columns([1, 1, 1, 1, 1])
|
82 |
+
if sample_options_21 == 'Sample 1 (Small)':
|
83 |
+
h = container_col_1.number_input(label='Your h:', value=158.50, min_value=0.00, step=0.01)
|
84 |
+
w = container_col_2.number_input(label='Your w:', value=44.00, min_value=0.00, step=0.01)
|
85 |
+
bmi = container_col_3.number_input(label='Your bmi:', value=17.50, min_value=0.00, step=0.01)
|
86 |
+
vtn = container_col_4.number_input(label='Your vtn: ', value=75.40, min_value=0.00, step=0.01)
|
87 |
+
vn = container_col_5.number_input(label='Your vn:', value=81.10, min_value=0.00, step=0.01)
|
88 |
+
vcn = container_col_1.number_input(label='Your vcn:', value=74.80, min_value=0.00, step=0.01)
|
89 |
+
cn = container_col_2.number_input(label='Your cn:', value=14.50, min_value=0.00, step=0.01)
|
90 |
+
cnnp = container_col_3.number_input(label='Your cnnp:', value=13.80, min_value=0.00, step=0.01)
|
91 |
+
cnnt = container_col_4.number_input(label='Your cnnt:', value=14.40, min_value=0.00, step=0.01)
|
92 |
+
cntp = container_col_5.number_input(label='Your cntp:', value=8.60, min_value=0.00, step=0.01)
|
93 |
+
cntt = container_col_1.number_input(label='Your cntt:', value=8.40, min_value=0.00, step=0.01)
|
94 |
+
ccnp = container_col_2.number_input(label='Your ccnp:', value=21.50, min_value=0.00, step=0.01)
|
95 |
+
ccnt = container_col_3.number_input(label='Your ccnt:', value=21.20, min_value=0.00, step=0.01)
|
96 |
+
snt = container_col_4.number_input(label='Your snt:', value=8.90, min_value=0.00, step=0.01)
|
97 |
+
sndp = container_col_5.number_input(label='Your sndp:', value=6.50, min_value=0.00, step=0.01)
|
98 |
+
sndt = container_col_1.number_input(label='Your sndt:', value=6.50, min_value=0.00, step=0.01)
|
99 |
+
xup = container_col_2.number_input(label='Your xup:', value=21.80, min_value=0.00, step=0.01)
|
100 |
+
xut = container_col_3.number_input(label='Your xut:', value=21.10, min_value=0.00, step=0.01)
|
101 |
+
cl = container_col_4.number_input(label='Your cl:', value=6.30, min_value=0.00, step=0.01)
|
102 |
+
ttp = container_col_5.number_input(label='Your ttp:', value=325.10, min_value=0.00, step=0.01)
|
103 |
+
ttt = container_col_3.number_input(label='Your ttt:', value=335.70, min_value=0.00, step=0.01)
|
104 |
+
elif sample_options_21 == 'Sample 2 (Medium)':
|
105 |
+
h = container_col_1.number_input(label='Your h:', value=163.00, min_value=0.00, step=0.01)
|
106 |
+
w = container_col_2.number_input(label='Your w:', value=43.00, min_value=0.00, step=0.01)
|
107 |
+
bmi = container_col_3.number_input(label='Your bmi:', value=16.20, min_value=0.00, step=0.01)
|
108 |
+
vtn = container_col_4.number_input(label='Your vtn: ', value=76.00, min_value=0.00, step=0.01)
|
109 |
+
vn = container_col_5.number_input(label='Your vn:', value=79.00, min_value=0.00, step=0.01)
|
110 |
+
vcn = container_col_1.number_input(label='Your vcn:', value=64.00, min_value=0.00, step=0.01)
|
111 |
+
cn = container_col_2.number_input(label='Your cn:', value=16.50, min_value=0.00, step=0.01)
|
112 |
+
cnnp = container_col_3.number_input(label='Your cnnp:', value=13.10, min_value=0.00, step=0.01)
|
113 |
+
cnnt = container_col_4.number_input(label='Your cnnt:', value=12.60, min_value=0.00, step=0.01)
|
114 |
+
cntp = container_col_5.number_input(label='Your cntp:', value=9.20, min_value=0.00, step=0.01)
|
115 |
+
cntt = container_col_1.number_input(label='Your cntt:', value=9.10, min_value=0.00, step=0.01)
|
116 |
+
ccnp = container_col_2.number_input(label='Your ccnp:', value=19.80, min_value=0.00, step=0.01)
|
117 |
+
ccnt = container_col_3.number_input(label='Your ccnt:', value=18.20, min_value=0.00, step=0.01)
|
118 |
+
snt = container_col_4.number_input(label='Your snt:', value=8.40, min_value=0.00, step=0.01)
|
119 |
+
sndp = container_col_5.number_input(label='Your sndp:', value=3.50, min_value=0.00, step=0.01)
|
120 |
+
sndt = container_col_1.number_input(label='Your sndt:', value=3.70, min_value=0.00, step=0.01)
|
121 |
+
xup = container_col_2.number_input(label='Your xup:', value=21.00, min_value=0.00, step=0.01)
|
122 |
+
xut = container_col_3.number_input(label='Your xut:', value=20.50, min_value=0.00, step=0.01)
|
123 |
+
cl = container_col_4.number_input(label='Your cl:', value=15.00, min_value=0.00, step=0.01)
|
124 |
+
ttp = container_col_5.number_input(label='Your ttp:', value=521.60, min_value=0.00, step=0.01)
|
125 |
+
ttt = container_col_3.number_input(label='Your ttt:', value=513.50, min_value=0.00, step=0.01)
|
126 |
+
else:
|
127 |
+
h = container_col_1.number_input(label='Your h:', value=152.00, min_value=0.00, step=0.01)
|
128 |
+
w = container_col_2.number_input(label='Your w:', value=46.00, min_value=0.00, step=0.01)
|
129 |
+
bmi = container_col_3.number_input(label='Your bmi:', value=19.90, min_value=0.00, step=0.01)
|
130 |
+
vtn = container_col_4.number_input(label='Your vtn: ', value=77.50, min_value=0.00, step=0.01)
|
131 |
+
vn = container_col_5.number_input(label='Your vn:', value=85.50, min_value=0.00, step=0.01)
|
132 |
+
vcn = container_col_1.number_input(label='Your vcn:', value=70.40, min_value=0.00, step=0.01)
|
133 |
+
cn = container_col_2.number_input(label='Your cn:', value=18.90, min_value=0.00, step=0.01)
|
134 |
+
cnnp = container_col_3.number_input(label='Your cnnp:', value=13.50, min_value=0.00, step=0.01)
|
135 |
+
cnnt = container_col_4.number_input(label='Your cnnt:', value=12.50, min_value=0.00, step=0.01)
|
136 |
+
cntp = container_col_5.number_input(label='Your cntp:', value=10.30, min_value=0.00, step=0.01)
|
137 |
+
cntt = container_col_1.number_input(label='Your cntt:', value=10.50, min_value=0.00, step=0.01)
|
138 |
+
ccnp = container_col_2.number_input(label='Your ccnp:', value=20.40, min_value=0.00, step=0.01)
|
139 |
+
ccnt = container_col_3.number_input(label='Your ccnt:', value=20.10, min_value=0.00, step=0.01)
|
140 |
+
snt = container_col_4.number_input(label='Your snt:', value=8.50, min_value=0.00, step=0.01)
|
141 |
+
sndp = container_col_5.number_input(label='Your sndp:', value=5.50, min_value=0.00, step=0.01)
|
142 |
+
sndt = container_col_1.number_input(label='Your sndt:', value=4.20, min_value=0.00, step=0.01)
|
143 |
+
xup = container_col_2.number_input(label='Your xup:', value=19.50, min_value=0.00, step=0.01)
|
144 |
+
xut = container_col_3.number_input(label='Your xut:', value=20.50, min_value=0.00, step=0.01)
|
145 |
+
cl = container_col_4.number_input(label='Your cl:', value=15.10, min_value=0.00, step=0.01)
|
146 |
+
ttp = container_col_5.number_input(label='Your ttp:', value=625.80, min_value=0.00, step=0.01)
|
147 |
+
ttt = container_col_3.number_input(label='Your ttt:', value=585.40, min_value=0.00, step=0.01)
|
148 |
+
|
149 |
+
col_1, col_2, col_3, col_4, col_5 = st.columns([1, 1, 1, 1, 1])
|
150 |
+
|
151 |
+
with col_3:
|
152 |
+
predict = st.button(label='Predict', use_container_width=True)
|
153 |
+
|
154 |
+
if predict:
|
155 |
+
if num_of_features == '6 measurements':
|
156 |
+
X_6 = [[vtn, vn, vcn, cl, ttp, ttt]]
|
157 |
+
X_6 = scaler_6.transform(X_6)
|
158 |
+
y_6 = clf_6.predict(X_6)
|
159 |
+
st.success(f'We recommend you choosing {y_6} size!')
|
160 |
+
elif num_of_features == '8 measurements':
|
161 |
+
X_8 = [[ttp, cl, cnnp, vn, vtn, cnnt, cntp, vcn]]
|
162 |
+
X_8 = scaler_8.transform(X_8)
|
163 |
+
y_8 = clf_8.predict(X_8)
|
164 |
+
st.success(f'We recommend you choosing {np.argmax(y_8, axis=1)} size!')
|
165 |
+
else:
|
166 |
+
X_21 = [[h, w, bmi, vtn, vn, vcn, cn, cnnp, cnnt, cntp, cntt, ccnp, ccnt, snt, sndp, sndt, xup, xut, cl, ttp, ttt]]
|
167 |
+
X_21 = scaler_21.transform(X_21)
|
168 |
+
y_21 = clf_21.predict(X_21)
|
169 |
+
st.success(f'We recommend you choosing {np.argmax(y_21, axis=1)} size!')
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.21.6
|
2 |
+
streamlit==1.20.0
|
3 |
+
scikit-learn==1.0.2
|
4 |
+
tensorflow-gpu==2.10.0
|
5 |
+
protobuf==3.19.6
|