|
import pickle |
|
import numpy as np |
|
import streamlit as st |
|
from tensorflow.keras.models import load_model |
|
import warnings |
|
|
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
|
|
st.set_page_config(page_title="ViWoBra - Hệ thống phân loại áo ngực phụ nữ Việt Nam", page_icon="👙", layout='wide', initial_sidebar_state="collapsed") |
|
|
|
def load_essential_models(scaler_6_path, scaler_8_path, scaler_full_path, clf_6_path, clf_8_path, clf_full_path): |
|
scaler_6 = pickle.load(open(file=scaler_6_path, mode='rb')) |
|
scaler_8 = pickle.load(open(file=scaler_8_path, mode='rb')) |
|
scaler_21 = pickle.load(open(file=scaler_full_path, mode='rb')) |
|
clf_6 = pickle.load(open(file=clf_6_path, mode='rb')) |
|
clf_8 = load_model(clf_8_path, compile=False) |
|
clf_21 = load_model(clf_full_path, compile=False) |
|
return scaler_6, scaler_8, scaler_21, clf_6, clf_8, clf_21 |
|
|
|
def convert_prediction(prediction): |
|
if (prediction[0] == [0]): |
|
return 'the small breast group' |
|
elif (prediction[0] == [1]): |
|
return 'the medium breast group' |
|
else: |
|
return 'the large breast group' |
|
|
|
st.markdown("<h1 style='text-align: center;'>Vietnamese Woman Bra Size Classifier</h1>", unsafe_allow_html=True) |
|
|
|
scaler_6, scaler_8, scaler_21, clf_6, clf_8, clf_21 = load_essential_models(scaler_6_path='./Models/6/scaler.pkl', scaler_8_path='./Models/8/scaler.pkl', scaler_full_path='./Models/21/scaler.pkl', clf_6_path='./Models/6/svc_fs_tune.pkl', clf_8_path='./Models/8/ANN_8.h5', clf_full_path='./Models/21/ANNs_full.h5') |
|
|
|
header_col_1, header_col_2 = st.columns([3, 2]) |
|
num_of_features = header_col_1.selectbox(label='Please select the number of measurements you have:', options=['6 measurements', '8 measurements', '21 measurements']) |
|
|
|
|
|
|
|
if num_of_features == '6 measurements': |
|
sample_options_6 = header_col_2.selectbox(label='Measurement sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)']) |
|
container_col_1, container_col_2, container_col_3 = st.columns([1, 1, 1]) |
|
if sample_options_6 == 'Sample 1 (Small)': |
|
vtn = container_col_1.number_input(label='Upper bust circumference (cm):', value=82.00, min_value=0.00, step=0.01) |
|
vn = container_col_2.number_input(label='Bust circumference (cm):', value=82.40, min_value=0.00, step=0.01) |
|
vcn = container_col_3.number_input(label='Chest circumference (cm):', value=73.10, min_value=0.00, step=0.01) |
|
cl = container_col_1.number_input(label='Size difference (cm):', value=9.30, min_value=0.00, step=0.01) |
|
ttp = container_col_2.number_input(label='Volume of right breast (cm3):', value=325.6, min_value=0.00, step=0.01) |
|
ttt = container_col_3.number_input(label='Volume of left breast (cm3):', value=325.6, min_value=0.00, step=0.01) |
|
elif sample_options_6 == 'Sample 2 (Medium)': |
|
vtn = container_col_1.number_input(label='Upper bust circumference (cm):', value=77.20, min_value=0.00, step=0.01) |
|
vn = container_col_2.number_input(label='Bust circumference (cm):', value=78.60, min_value=0.00, step=0.01) |
|
vcn = container_col_3.number_input(label='Chest circumference (cm):', value=66.50, min_value=0.00, step=0.01) |
|
cl = container_col_1.number_input(label='Size difference (cm):', value=12.10, min_value=0.00, step=0.01) |
|
ttp = container_col_2.number_input(label='Volume of right breast (cm3):', value=388.80, min_value=0.00, step=0.01) |
|
ttt = container_col_3.number_input(label='Volume of left breast (cm3):', value=324.60, min_value=0.00, step=0.01) |
|
else: |
|
vtn = container_col_1.number_input(label='Upper bust circumference (cm):', value=86.50, min_value=0.00, step=0.01) |
|
vn = container_col_2.number_input(label='Bust circumference (cm):', value=88.00, min_value=0.00, step=0.01) |
|
vcn = container_col_3.number_input(label='Chest circumference (cm):', value=74.00, min_value=0.00, step=0.01) |
|
cl = container_col_1.number_input(label='Size difference (cm):', value=14.00, min_value=0.00, step=0.01) |
|
ttp = container_col_2.number_input(label='Volume of right breast (cm3):', value=451.30, min_value=0.00, step=0.01) |
|
ttt = container_col_3.number_input(label='Volume of left breast (cm3):', value=471.60, min_value=0.00, step=0.01) |
|
|
|
elif num_of_features == '8 measurements': |
|
sample_options_8 = header_col_2.selectbox(label='Measurement sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)']) |
|
container_col_1, container_col_2, container_col_3, container_col_4 = st.columns([1, 1, 1, 1]) |
|
if sample_options_8 == 'Sample 1 (Small)': |
|
ttp = container_col_1.number_input(label='Volume of right breast (cm3):', value=287.50, min_value=0.00, step=0.01) |
|
cl = container_col_2.number_input(label='Size difference (cm):', value=7.00, min_value=0.00, step=0.01) |
|
cnnp = container_col_3.number_input(label='Outer right breast curve (cm):', value=8.50, min_value=0.00, step=0.01) |
|
vn = container_col_4.number_input(label='Bust circumference (cm):', value=74.50, min_value=0.00, step=0.01) |
|
vtn = container_col_1.number_input(label='Upper bust circumference (cm):', value=74.00, min_value=0.00, step=0.01) |
|
cnnt = container_col_2.number_input(label='Outer left breast curve (cm):', value=8.90, min_value=0.00, step=0.01) |
|
cntp = container_col_3.number_input(label='Inner right breast curve (cm):', value=8.50, min_value=0.00, step=0.01) |
|
vcn = container_col_4.number_input(label='Chest circumference (cm):', value=67.50, min_value=0.00, step=0.01) |
|
elif sample_options_8 == 'Sample 2 (Medium)': |
|
ttp = container_col_1.number_input(label='Volume of right breast (cm3):', value=489.60, min_value=0.00, step=0.01) |
|
cl = container_col_2.number_input(label='Size difference (cm):', value=13.00, min_value=0.00, step=0.01) |
|
cnnp = container_col_3.number_input(label='Outer right breast curve (cm):', value=12.40, min_value=0.00, step=0.01) |
|
vn = container_col_4.number_input(label='Bust circumference (cm):', value=78.30, min_value=0.00, step=0.01) |
|
vtn = container_col_1.number_input(label='Upper bust circumference (cm):', value=77.20, min_value=0.00, step=0.01) |
|
cnnt = container_col_2.number_input(label='Outer left breast curve (cm):', value=11.60, min_value=0.00, step=0.01) |
|
cntp = container_col_3.number_input(label='Inner right breast curve (cm):', value=8.70, min_value=0.00, step=0.01) |
|
vcn = container_col_4.number_input(label='Chest circumference (cm):', value=65.30, min_value=0.00, step=0.01) |
|
else: |
|
ttp = container_col_1.number_input(label='Volume of right breast (cm3):', value=568.2, min_value=0.00, step=0.01) |
|
cl = container_col_2.number_input(label='Size difference (cm):', value=13.7, min_value=0.00, step=0.01) |
|
cnnp = container_col_3.number_input(label='Outer right breast curve (cm):', value=14.0, min_value=0.00, step=0.01) |
|
vn = container_col_4.number_input(label='Bust circumference (cm):', value=88.7, min_value=0.00, step=0.01) |
|
vtn = container_col_1.number_input(label='Upper bust circumference (cm):', value=86.5, min_value=0.00, step=0.01) |
|
cnnt = container_col_2.number_input(label='Outer left breast curve (cm):', value=12.5, min_value=0.00, step=0.01) |
|
cntp = container_col_3.number_input(label='Inner right breast curve (cm):', value=10.7, min_value=0.00, step=0.01) |
|
vcn = container_col_4.number_input(label='Chest circumference (cm):', value=75.0, min_value=0.00, step=0.01) |
|
else: |
|
sample_options_21 = header_col_2.selectbox(label='Measurement sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)']) |
|
container_col_1, container_col_2, container_col_3, container_col_4, container_col_5 = st.columns([1, 1, 1, 1, 1]) |
|
if sample_options_21 == 'Sample 1 (Small)': |
|
h = container_col_1.number_input(label='Height (cm):', value=158.50, min_value=0.00, step=0.01) |
|
w = container_col_2.number_input(label='Weight (kg):', value=44.00, min_value=0.00, step=0.01) |
|
bmi = container_col_3.number_input(label='BMI (kg/h^2):', value=17.50, min_value=0.00, step=0.01) |
|
vtn = container_col_4.number_input(label='Upper bust circumference (cm): ', value=75.40, min_value=0.00, step=0.01) |
|
vn = container_col_5.number_input(label='Bust circumference (cm):', value=81.10, min_value=0.00, step=0.01) |
|
vcn = container_col_1.number_input(label='Chest circumference (cm):', value=74.80, min_value=0.00, step=0.01) |
|
cn = container_col_2.number_input(label='Distance between nipple points (cm):', value=14.50, min_value=0.00, step=0.01) |
|
cnnp = container_col_3.number_input(label='Outer right breast curve (cm):', value=13.80, min_value=0.00, step=0.01) |
|
cnnt = container_col_4.number_input(label='Outer left breast curve (cm):', value=14.40, min_value=0.00, step=0.01) |
|
cntp = container_col_5.number_input(label='Inner right breast curve (cm):', value=8.60, min_value=0.00, step=0.01) |
|
cntt = container_col_1.number_input(label='Inner left breast curve (cm):', value=8.40, min_value=0.00, step=0.01) |
|
ccnp = container_col_2.number_input(label='Right breast curve (cm):', value=21.50, min_value=0.00, step=0.01) |
|
ccnt = container_col_3.number_input(label='Left breast curve (cm):', value=21.20, min_value=0.00, step=0.01) |
|
snt = container_col_4.number_input(label='Upper breast projection (cm):', value=8.90, min_value=0.00, step=0.01) |
|
sndp = container_col_5.number_input(label='Lower right breast projection (cm):', value=6.50, min_value=0.00, step=0.01) |
|
sndt = container_col_1.number_input(label='Lower left breast projection (cm):', value=6.50, min_value=0.00, step=0.01) |
|
xup = container_col_2.number_input(label='Distance from sternum to right nipple point (cm):', value=21.80, min_value=0.00, step=0.01) |
|
xut = container_col_3.number_input(label='Distance from sternum to left nipple point (cm):', value=21.10, min_value=0.00, step=0.01) |
|
cl = container_col_4.number_input(label='Size difference (cm):', value=6.30, min_value=0.00, step=0.01) |
|
ttp = container_col_5.number_input(label='Volume of right breast (cm3):', value=325.10, min_value=0.00, step=0.01) |
|
ttt = container_col_3.number_input(label='Volume of left breast (cm3):', value=335.70, min_value=0.00, step=0.01) |
|
elif sample_options_21 == 'Sample 2 (Medium)': |
|
h = container_col_1.number_input(label='Height (cm):', value=163.00, min_value=0.00, step=0.01) |
|
w = container_col_2.number_input(label='Weight (kg):', value=43.00, min_value=0.00, step=0.01) |
|
bmi = container_col_3.number_input(label='BMI (kg/h^2):', value=16.20, min_value=0.00, step=0.01) |
|
vtn = container_col_4.number_input(label='Upper bust circumference (cm): ', value=76.00, min_value=0.00, step=0.01) |
|
vn = container_col_5.number_input(label='Bust circumference (cm):', value=79.00, min_value=0.00, step=0.01) |
|
vcn = container_col_1.number_input(label='Chest circumference (cm):', value=64.00, min_value=0.00, step=0.01) |
|
cn = container_col_2.number_input(label='Distance between nipple points (cm):', value=16.50, min_value=0.00, step=0.01) |
|
cnnp = container_col_3.number_input(label='Outer right breast curve (cm):', value=13.10, min_value=0.00, step=0.01) |
|
cnnt = container_col_4.number_input(label='Outer left breast curve (cm):', value=12.60, min_value=0.00, step=0.01) |
|
cntp = container_col_5.number_input(label='Inner right breast curve (cm):', value=9.20, min_value=0.00, step=0.01) |
|
cntt = container_col_1.number_input(label='Inner left breast curve (cm):', value=9.10, min_value=0.00, step=0.01) |
|
ccnp = container_col_2.number_input(label='Right breast curve (cm):', value=19.80, min_value=0.00, step=0.01) |
|
ccnt = container_col_3.number_input(label='Left breast curve (cm):', value=18.20, min_value=0.00, step=0.01) |
|
snt = container_col_4.number_input(label='Upper breast projection (cm):', value=8.40, min_value=0.00, step=0.01) |
|
sndp = container_col_5.number_input(label='Lower right breast projection (cm):', value=3.50, min_value=0.00, step=0.01) |
|
sndt = container_col_1.number_input(label='Lower left breast projection (cm):', value=3.70, min_value=0.00, step=0.01) |
|
xup = container_col_2.number_input(label='Distance from sternum to right nipple point (cm):', value=21.00, min_value=0.00, step=0.01) |
|
xut = container_col_3.number_input(label='Distance from sternum to left nipple point (cm):', value=20.50, min_value=0.00, step=0.01) |
|
cl = container_col_4.number_input(label='Size difference (cm):', value=15.00, min_value=0.00, step=0.01) |
|
ttp = container_col_5.number_input(label='Volume of right breast (cm3):', value=521.60, min_value=0.00, step=0.01) |
|
ttt = container_col_3.number_input(label='Volume of left breast (cm3):', value=513.50, min_value=0.00, step=0.01) |
|
else: |
|
h = container_col_1.number_input(label='Height (cm):', value=152.00, min_value=0.00, step=0.01) |
|
w = container_col_2.number_input(label='Weight (kg):', value=46.00, min_value=0.00, step=0.01) |
|
bmi = container_col_3.number_input(label='BMI (kg/h^2):', value=19.90, min_value=0.00, step=0.01) |
|
vtn = container_col_4.number_input(label='Upper bust circumference (cm): ', value=77.50, min_value=0.00, step=0.01) |
|
vn = container_col_5.number_input(label='Bust circumference (cm):', value=85.50, min_value=0.00, step=0.01) |
|
vcn = container_col_1.number_input(label='Chest circumference (cm):', value=70.40, min_value=0.00, step=0.01) |
|
cn = container_col_2.number_input(label='Distance between nipple points (cm):', value=18.90, min_value=0.00, step=0.01) |
|
cnnp = container_col_3.number_input(label='Outer right breast curve (cm):', value=13.50, min_value=0.00, step=0.01) |
|
cnnt = container_col_4.number_input(label='Outer left breast curve (cm):', value=12.50, min_value=0.00, step=0.01) |
|
cntp = container_col_5.number_input(label='Inner right breast curve (cm):', value=10.30, min_value=0.00, step=0.01) |
|
cntt = container_col_1.number_input(label='Inner left breast curve (cm):', value=10.50, min_value=0.00, step=0.01) |
|
ccnp = container_col_2.number_input(label='Right breast curve (cm):', value=20.40, min_value=0.00, step=0.01) |
|
ccnt = container_col_3.number_input(label='Left breast curve (cm):', value=20.10, min_value=0.00, step=0.01) |
|
snt = container_col_4.number_input(label='Upper breast projection (cm):', value=8.50, min_value=0.00, step=0.01) |
|
sndp = container_col_5.number_input(label='Lower right breast projection (cm):', value=5.50, min_value=0.00, step=0.01) |
|
sndt = container_col_1.number_input(label='Lower left breast projection (cm):', value=4.20, min_value=0.00, step=0.01) |
|
xup = container_col_2.number_input(label='Distance from sternum to right nipple point (cm):', value=19.50, min_value=0.00, step=0.01) |
|
xut = container_col_3.number_input(label='Distance from sternum to left nipple point (cm):', value=20.50, min_value=0.00, step=0.01) |
|
cl = container_col_4.number_input(label='Size difference (cm):', value=15.10, min_value=0.00, step=0.01) |
|
ttp = container_col_5.number_input(label='Volume of right breast (cm3):', value=625.80, min_value=0.00, step=0.01) |
|
ttt = container_col_3.number_input(label='Volume of left breast (cm3):', value=585.40, min_value=0.00, step=0.01) |
|
|
|
col_1, col_2, col_3, col_4, col_5 = st.columns([1, 1, 1, 1, 1]) |
|
|
|
with col_3: |
|
predict = st.button(label='Predict', use_container_width=True) |
|
|
|
if predict: |
|
if num_of_features == '6 measurements': |
|
X_6 = np.array([[vtn, vn, vcn, cl, ttp, ttt]]) |
|
X_6 = scaler_6.transform(X_6) |
|
y_6 = clf_6.predict(X_6) |
|
|
|
y_pred_6 = convert_prediction(y_6) |
|
|
|
styled_text = f"<h3 style='text-align: center;'>You belong to <span style='color: red; font-weight: bold;'>{y_pred_6}</span> !</h3>" |
|
st.markdown(styled_text, unsafe_allow_html=True) |
|
|
|
elif num_of_features == '8 measurements': |
|
X_8 = np.array([[ttp, cl, cnnp, vn, vtn, cnnt, cntp, vcn]]) |
|
X_8 = scaler_8.transform(X_8) |
|
y_8 = clf_8.predict(X_8) |
|
y_pred_8 = convert_prediction(np.argmax(y_8, axis=1)) |
|
|
|
styled_text = f"<h3 style='text-align: center;'>You belong to <span style='color: red; font-weight: bold;'>{y_pred_8}</span> !</h3>" |
|
st.markdown(styled_text, unsafe_allow_html=True) |
|
else: |
|
X_21 = np.array([[h, w, bmi, vtn, vn, vcn, cn, cnnp, cnnt, cntp, cntt, ccnp, ccnt, snt, sndp, sndt, xup, xut, cl, ttp, ttt]]) |
|
X_21 = scaler_21.transform(X_21) |
|
y_21 = clf_21.predict(X_21) |
|
y_pred_21 = convert_prediction(np.argmax(y_21, axis=1)) |
|
|
|
styled_text = f"<h3 style='text-align: center;'>You belong to <span style='color: red; font-weight: bold;'>{y_pred_21}</span> !</h3>" |
|
st.markdown(styled_text, unsafe_allow_html=True) |