nouamanetazi's picture
nouamanetazi HF staff
.
20cc4aa
raw
history blame
9.44 kB
import os
import time
from datetime import datetime
import folium
import pandas as pd
import streamlit as st
from huggingface_hub import HfApi
from streamlit_folium import st_folium
from src.text_content import (
COLOR_MAPPING,
ICON_MAPPING,
REVIEW_TEXT,
)
from src.utils import add_latlng_col, init_map, parse_gg_sheet
import os
os.environ['STREAMLIT_UI_HIDE_SIDEBAR_NAV'] = 'True'
os.environ['STREAMLIT_UI_HIDE_TOP_BAR'] = 'True'
TOKEN = os.environ.get("HF_TOKEN", None)
REQUESTS_URL = "https://docs.google.com/spreadsheets/d/1gYoBBiBo1L18IVakHkf3t1fOGvHWb23loadyFZUeHJs/edit#gid=966953708"
INTERVENTIONS_URL = "https://docs.google.com/spreadsheets/d/1eXOTqunOWWP8FRdENPs4cU9ulISm4XZWYJJNR1-SrwY/edit#gid=2089222765"
api = HfApi(TOKEN)
# Initialize Streamlit Config
st.set_page_config(
layout="wide",
initial_sidebar_state="collapsed",
page_icon="🤝",
page_title="Nt3awnou Map نتعاونو",
)
hide_menu_style = """
<style>
#MainMenu {visibility: hidden;}
</style>
"""
st.markdown(hide_menu_style, unsafe_allow_html=True)
st.markdown(
"""
<style>
.block-container {
padding-top: 0rem;
padding-bottom: 0rem;
padding-left: 0rem;
padding-right: 0rem;
}
.awesome-marker i {
font-size: 11px;
margin-top: 8px;
}
</style>
""",
unsafe_allow_html=True,
)
def display_interventions(interventions_df):
"""Display NGO interventions on the map"""
for index, row in interventions_df.iterrows():
village_status = row[interventions_df.columns[7]]
if pd.isna(village_status):
continue
if (
row[interventions_df.columns[5]]
== "Intervention prévue dans le futur / Planned future intervention"
):
# future intervention
color_mk = "pink"
status = "Planned ⌛"
elif (
row[interventions_df.columns[5]]
!= "Intervention prévue dans le futur / Planned future intervention"
and village_status
!= "Critique, Besoin d'aide en urgence / Critical, in urgent need of help"
):
# past intervention and village not in a critical condition
color_mk = "green"
status = "Done ✅"
else:
color_mk = "darkgreen"
status = "Partial ⚠️"
intervention_type = row[interventions_df.columns[6]].split("/")[0].strip()
org = row[interventions_df.columns[1]]
city = row[interventions_df.columns[9]]
date = row[interventions_df.columns[4]]
population = row[interventions_df.columns[11]]
intervention_info = f"<b>Intervention Status:</b> {status}<br><b>Village Status:</b> {village_status.split('/')[0]}<br><b>Org:</b> {org}<br><b>Intervention:</b> {intervention_type}<br><b>Population:</b> {population}<br><b>📅 Date:</b> {date}"
if row["latlng"] is None:
continue
fg.add_child(folium.Marker(
location=row["latlng"],
tooltip=city,
popup=folium.Popup(intervention_info, max_width=300),
icon=folium.Icon(color=color_mk),
))
def show_requests(filtered_df):
"""Display victim requests on the map"""
for index, row in filtered_df.iterrows():
request_type = row["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"]
long_lat = row[
"هل يمكنك تقديم الإحداثيات الدقيقة للموقع؟ (ادا كنت لا توجد بعين المكان) متلاً \n31.01837503440344, -6.781405948842175"
]
maps_url = f"https://maps.google.com/?q={long_lat}"
display_text = f'<b>Request Type:</b> {request_type}<br><b>Id:</b> {row["id"]}<br><a href="{maps_url}" target="_blank" rel="noopener noreferrer"><b>Google Maps</b></a>'
icon_name = ICON_MAPPING.get(request_type, "info-sign")
if row["latlng"] is None:
continue
fg.add_child(folium.Marker(
location=row["latlng"],
tooltip=row[" لأي جماعة / قيادة / دوار تنتمون ؟"]
if not pd.isna(row[" لأي جماعة / قيادة / دوار تنتمون ؟"])
else None,
popup=folium.Popup(display_text, max_width=300),
icon=folium.Icon(
color=COLOR_MAPPING.get(request_type, "blue"), icon=icon_name
),
))
def display_google_sheet_tables(data_url):
"""Display the google sheet tables for requests and interventions"""
st.markdown(
f"""<iframe src="{data_url}" width="100%" height="600px"></iframe>""",
unsafe_allow_html=True,
)
def display_dataframe(df, drop_cols, data_url, search_id=True, status=False, for_help_requests=False):
"""Display the dataframe in a table"""
col_1, col_2 = st.columns([1, 1])
with col_1:
query = st.text_input(
"🔍 Search for information / بحث عن المعلومات",
key=f"search_requests_{int(search_id)}",
)
with col_2:
if search_id:
id_number = st.number_input(
"🔍 Search for an id / بحث عن رقم",
min_value=0,
max_value=len(filtered_df),
value=0,
step=1,
)
if status:
selected_status = st.selectbox(
"🗓️ Status / حالة",
["all / الكل", "Done / تم", "Planned / مخطط لها"],
key="status",
)
if query:
# Filtering the dataframe based on the query
mask = df.apply(lambda row: row.astype(str).str.contains(query).any(), axis=1)
display_df = df[mask]
else:
display_df = df
display_df = display_df.drop(drop_cols, axis=1)
if search_id and id_number:
display_df = display_df[display_df["id"] == id_number]
if status:
target = "Pouvez-vous nous préciser si vous êtes déjà intervenus ou si vous prévoyez de le faire | Tell us if you already made the intervention, or if you're planning to do it"
if selected_status == "Done / تم":
display_df = display_df[
display_df[target] == "Intervention déjà passée / Past intevention"
]
elif selected_status == "Planned / مخطط لها":
display_df = display_df[
display_df[target] != "Intervention déjà passée / Past intevention"
]
st.dataframe(display_df, height=500)
st.markdown(
f"To view the full Google Sheet for advanced filtering go to: {data_url} **لعرض الورقة كاملة، اذهب إلى**"
)
# if we want to check hidden contact information
if for_help_requests:
st.markdown(
"We are hiding contact information to protect the privacy of the victims. If you are an NGO and want to contact the victims, please contact us at nt3awnoumorocco@gmail.com",
)
st.markdown(
"""
<div style="text-align: left;">
<a href="mailto:nt3awnoumorocco@gmail.com">nt3awnoumorocco@gmail.com</a> نحن نخفي معلومات الاتصال لحماية خصوصية الضحايا. إذا كنت جمعية وتريد الاتصال بالضحايا، يرجى الاتصال بنا على
</div>
""",
unsafe_allow_html=True,
)
def id_review_submission():
"""Id review submission form"""
st.subheader("🔍 Review of requests")
st.markdown(REVIEW_TEXT)
id_to_review = st.number_input(
"Enter id / أدخل الرقم", min_value=0, max_value=len(df), value=0, step=1
)
reason_for_review = st.text_area("Explain why / أدخل سبب المراجعة")
if st.button("Submit / أرسل"):
if reason_for_review == "":
st.error("Please enter a reason / الرجاء إدخال سبب")
else:
filename = f"review_id_{id_to_review}_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt"
with open(filename, "w") as f:
f.write(f"id: {id_to_review}, explanation: {reason_for_review}\n")
api.upload_file(
path_or_fileobj=filename,
path_in_repo=filename,
repo_id="nt3awnou/review_requests",
repo_type="dataset",
)
st.success(
"Submitted at https://huggingface.co/datasets/nt3awnou/review_requests/ تم الإرسال"
)
# Load data and initialize map with plugins
df = parse_gg_sheet(REQUESTS_URL)
df = add_latlng_col(df, process_column=15)
interventions_df = parse_gg_sheet(INTERVENTIONS_URL)
interventions_df = add_latlng_col(interventions_df, process_column=12)
m = init_map()
fg = folium.FeatureGroup(name="Markers")
# Selection of requests
options = [
"إغاثة",
"مساعدة طبية",
"مأوى",
"طعام وماء",
"مخاطر (تسرب الغاز، تلف في الخدمات العامة...)",
]
selected_options = []
df["id"] = df.index
filtered_df = df
display_interventions(interventions_df)
# # Show requests
show_requests(df)
st_folium(m, use_container_width=True, returned_objects=[], feature_group_to_add=fg, key="map")