nikhil_no_persistent / lilac /data /dataset_duckdb.py
nsthorat-lilac's picture
Duplicate from lilacai/nikhil_staging
bfc0ec6
"""The DuckDB implementation of the dataset database."""
import functools
import gc
import glob
import math
import os
import pathlib
import re
import shutil
import threading
from typing import Any, Iterable, Iterator, Optional, Sequence, Union, cast
import duckdb
import numpy as np
import pandas as pd
import yaml
from pandas.api.types import is_object_dtype
from pydantic import BaseModel, validator
from typing_extensions import override
from ..auth import UserInfo
from ..batch_utils import deep_flatten, deep_unflatten
from ..config import CONFIG_FILENAME, DatasetConfig, DatasetSettings, EmbeddingConfig, SignalConfig
from ..embeddings.vector_store import VectorDBIndex
from ..env import data_path, env
from ..schema import (
MANIFEST_FILENAME,
PATH_WILDCARD,
ROWID,
TEXT_SPAN_END_FEATURE,
TEXT_SPAN_START_FEATURE,
VALUE_KEY,
Bin,
DataType,
Field,
Item,
Path,
PathKey,
PathTuple,
RichData,
Schema,
SourceManifest,
column_paths_match,
is_float,
is_integer,
is_ordinal,
is_temporal,
normalize_path,
signal_type_supports_dtype,
)
from ..signal import Signal, TextEmbeddingSignal, VectorSignal, get_signal_by_type, resolve_signal
from ..signals.concept_labels import ConceptLabelsSignal
from ..signals.concept_scorer import ConceptSignal
from ..signals.semantic_similarity import SemanticSimilaritySignal
from ..signals.substring_search import SubstringSignal
from ..sources.source import Source
from ..tasks import TaskStepId, progress
from ..utils import DebugTimer, get_dataset_output_dir, log, open_file, to_yaml
from . import dataset
from .dataset import (
BINARY_OPS,
LIST_OPS,
MAX_TEXT_LEN_DISTINCT_COUNT,
SAMPLE_AVG_TEXT_LENGTH,
TOO_MANY_DISTINCT,
UNARY_OPS,
BinaryOp,
Column,
ColumnId,
Dataset,
DatasetManifest,
FeatureListValue,
FeatureValue,
Filter,
FilterLike,
GroupsSortBy,
MediaResult,
Search,
SearchResultInfo,
SelectGroupsResult,
SelectRowsResult,
SelectRowsSchemaResult,
SelectRowsSchemaUDF,
SortOrder,
SortResult,
StatsResult,
column_from_identifier,
make_parquet_id,
)
from .dataset_utils import (
count_primitives,
create_signal_schema,
flatten_keys,
merge_schemas,
schema_contains_path,
sparse_to_dense_compute,
wrap_in_dicts,
write_embeddings_to_disk,
write_items_to_parquet,
)
SIGNAL_MANIFEST_FILENAME = 'signal_manifest.json'
DATASET_SETTINGS_FILENAME = 'settings.json'
SOURCE_VIEW_NAME = 'source'
NUM_AUTO_BINS = 15
BINARY_OP_TO_SQL: dict[BinaryOp, str] = {
'equals': '=',
'not_equal': '!=',
'greater': '>',
'greater_equal': '>=',
'less': '<',
'less_equal': '<='
}
class DuckDBSearchUDF(BaseModel):
"""The transformation of searches to column UDFs."""
udf: Column
search_path: PathTuple
output_path: PathTuple
sort: Optional[tuple[PathTuple, SortOrder]] = None
class DuckDBSearchUDFs(BaseModel):
"""The transformation of searches to column UDFs with sorts."""
udfs: list[Column]
output_paths: list[PathTuple]
sorts: list[tuple[PathTuple, SortOrder]]
class DatasetDuckDB(Dataset):
"""The DuckDB implementation of the dataset database."""
def __init__(self, namespace: str, dataset_name: str, vector_store: str = 'hnsw'):
super().__init__(namespace, dataset_name)
self.dataset_path = get_dataset_output_dir(data_path(), namespace, dataset_name)
# TODO: Infer the manifest from the parquet files so this is lighter weight.
self._source_manifest = read_source_manifest(self.dataset_path)
self._signal_manifests: list[SignalManifest] = []
self.con = duckdb.connect(database=':memory:')
# Maps a path and embedding to the vector index. This is lazily generated as needed.
self._vector_indices: dict[tuple[PathKey, str], VectorDBIndex] = {}
self.vector_store = vector_store
self._manifest_lock = threading.Lock()
self._config_lock = threading.Lock()
config_filepath = get_config_filepath(namespace, dataset_name)
if not os.path.exists(config_filepath):
# For backwards compatibility, if the config doesn't exist, create one. This will be out of
# sync but allow the server to still boot and update with new config changes.
# Make a metaclass so we get a valid `Source` class.
source_cls = type('Source_no_source', (Source,), {'name': 'no_source'})
old_settings_filepath = os.path.join(
get_dataset_output_dir(data_path(), namespace, dataset_name), 'settings.json')
settings = DatasetSettings()
if os.path.exists(old_settings_filepath):
with open(old_settings_filepath) as f:
settings = DatasetSettings.parse_raw(f.read())
config = DatasetConfig(
namespace=namespace, name=dataset_name, source=source_cls(), settings=settings)
with open(get_config_filepath(self.namespace, self.dataset_name), 'w') as f:
f.write(to_yaml(config.dict(exclude_none=True, exclude_defaults=True)))
# Create a join table from all the parquet files.
self.manifest()
@override
def delete(self) -> None:
"""Deletes the dataset."""
self.con.close()
shutil.rmtree(self.dataset_path, ignore_errors=True)
def _create_view(self, view_name: str, files: list[str]) -> None:
self.con.execute(f"""
CREATE OR REPLACE VIEW {_escape_col_name(view_name)} AS (SELECT * FROM read_parquet({files}));
""")
# NOTE: This is cached, but when the latest mtime of any file in the dataset directory changes
# the results are invalidated.
@functools.cache
def _recompute_joint_table(self, latest_mtime_micro_sec: int) -> DatasetManifest:
del latest_mtime_micro_sec # This is used as the cache key.
merged_schema = self._source_manifest.data_schema.copy(deep=True)
self._signal_manifests = []
# Make a joined view of all the column groups.
self._create_view(SOURCE_VIEW_NAME,
[os.path.join(self.dataset_path, f) for f in self._source_manifest.files])
# Add the signal column groups.
for root, _, files in os.walk(self.dataset_path):
for file in files:
if not file.endswith(SIGNAL_MANIFEST_FILENAME):
continue
with open_file(os.path.join(root, file)) as f:
signal_manifest = SignalManifest.parse_raw(f.read())
self._signal_manifests.append(signal_manifest)
signal_files = [os.path.join(root, f) for f in signal_manifest.files]
if signal_files:
self._create_view(signal_manifest.parquet_id, signal_files)
merged_schema = merge_schemas([self._source_manifest.data_schema] +
[m.data_schema for m in self._signal_manifests])
# The logic below generates the following example query:
# CREATE OR REPLACE VIEW t AS (
# SELECT
# source.*,
# "parquet_id1"."root_column" AS "parquet_id1",
# "parquet_id2"."root_column" AS "parquet_id2"
# FROM source JOIN "parquet_id1" USING (rowid,) JOIN "parquet_id2" USING (rowid,)
# );
# NOTE: "root_column" for each signal is defined as the top-level column.
select_sql = ', '.join([f'{SOURCE_VIEW_NAME}.*'] + [(
f'{_escape_col_name(manifest.parquet_id)}.{_escape_col_name(_root_column(manifest))} '
f'AS {_escape_col_name(manifest.parquet_id)}')
for manifest in self._signal_manifests
if manifest.files])
join_sql = ' '.join([SOURCE_VIEW_NAME] + [
f'LEFT JOIN {_escape_col_name(manifest.parquet_id)} USING ({ROWID})'
for manifest in self._signal_manifests
if manifest.files
])
view_or_table = 'TABLE'
use_views = env('DUCKDB_USE_VIEWS', 0) or 0
if int(use_views):
view_or_table = 'VIEW'
sql_cmd = f"""CREATE OR REPLACE {view_or_table} t AS (SELECT {select_sql} FROM {join_sql})"""
self.con.execute(sql_cmd)
# Get the total size of the table.
size_query = 'SELECT COUNT() as count FROM t'
size_query_result = cast(Any, self._query(size_query)[0])
num_items = cast(int, size_query_result[0])
return DatasetManifest(
namespace=self.namespace,
dataset_name=self.dataset_name,
data_schema=merged_schema,
num_items=num_items)
@override
def manifest(self) -> DatasetManifest:
# Use the latest modification time of all files under the dataset path as the cache key for
# re-computing the manifest and the joined view.
with self._manifest_lock:
all_dataset_files = glob.iglob(os.path.join(self.dataset_path, '**'), recursive=True)
latest_mtime = max(map(os.path.getmtime, all_dataset_files))
latest_mtime_micro_sec = int(latest_mtime * 1e6)
return self._recompute_joint_table(latest_mtime_micro_sec)
def _update_config(self,
settings: Optional[DatasetSettings] = None,
signals: Optional[list[SignalConfig]] = None,
embeddings: Optional[list[EmbeddingConfig]] = None) -> None:
with self._config_lock:
config = self.config()
if settings is not None:
config.settings = settings
if signals is not None:
# Update the config with the new signal, if the new signal has not already been added (this
# can happen if a signal is re-computed)
update_config = True
for signal_config in signals:
for existing_signal in config.signals:
if (existing_signal.path == signal_config.path and
existing_signal.signal.dict() == signal_config.signal.dict()):
update_config = False
break
if update_config:
config.signals.append(signal_config)
if embeddings is not None:
# Update the config with the new signal, if the new signal has not already been added (this
# can happen if a signal is re-computed)
update_config = True
for embedding_config in embeddings:
for existing_embedding in config.embeddings:
if (existing_embedding.path == embedding_config.path and
existing_embedding.embedding == embedding_config.embedding):
update_config = False
break
if update_config:
config.embeddings.append(embedding_config)
with open(get_config_filepath(self.namespace, self.dataset_name), 'w') as f:
f.write(to_yaml(config.dict(exclude_none=True, exclude_defaults=True)))
@override
def config(self) -> DatasetConfig:
config_filepath = get_config_filepath(self.namespace, self.dataset_name)
with open(config_filepath) as f:
return DatasetConfig(**yaml.safe_load(f))
@override
def settings(self) -> DatasetSettings:
# Settings should always have a default.
settings = self.config().settings
assert settings is not None
return settings
@override
def update_settings(self, settings: DatasetSettings) -> None:
self._update_config(settings)
def count(self, filters: Optional[list[FilterLike]] = None) -> int:
"""Count the number of rows."""
raise NotImplementedError('count is not yet implemented for DuckDB.')
def _get_vector_db_index(self, embedding: str, path: PathTuple) -> VectorDBIndex:
# Refresh the manifest to make sure we have the latest signal manifests.
self.manifest()
index_key = (path, embedding)
if index_key in self._vector_indices:
return self._vector_indices[index_key]
manifests = [
m for m in self._signal_manifests
if schema_contains_path(m.data_schema, path) and m.vector_store and m.signal.name == embedding
]
if not manifests:
raise ValueError(f'No embedding found for path {path}.')
if len(manifests) > 1:
raise ValueError(f'Multiple embeddings found for path {path}. Got: {manifests}')
manifest = manifests[0]
if not manifest.vector_store:
raise ValueError(f'Signal manifest for path {path} is not an embedding. '
f'Got signal manifest: {manifest}')
base_path = os.path.join(self.dataset_path, _signal_dir(manifest.enriched_path),
manifest.signal.name)
path_id = f'{self.namespace}/{self.dataset_name}:{path}'
with DebugTimer(f'Loading vector store "{manifest.vector_store}" for {path_id}'
f' with embedding "{embedding}"'):
vector_index = VectorDBIndex(manifest.vector_store)
vector_index.load(base_path)
# Cache the vector index.
self._vector_indices[index_key] = vector_index
return vector_index
@override
def compute_signal(self,
signal: Signal,
path: Path,
task_step_id: Optional[TaskStepId] = None) -> None:
if isinstance(signal, TextEmbeddingSignal):
return self.compute_embedding(signal.name, path, task_step_id)
source_path = normalize_path(path)
manifest = self.manifest()
if task_step_id is None:
# Make a dummy task step so we report progress via tqdm.
task_step_id = ('', 0)
# The manifest may have changed after computing the dependencies.
manifest = self.manifest()
signal_col = Column(path=source_path, alias='value', signal_udf=signal)
select_rows_result = self.select_rows([ROWID, signal_col],
task_step_id=task_step_id,
resolve_span=True)
df = select_rows_result.df()
values = df['value']
enriched_path = _col_destination_path(signal_col, is_computed_signal=True)
spec = _split_path_into_subpaths_of_lists(enriched_path)
output_dir = os.path.join(self.dataset_path, _signal_dir(enriched_path))
signal_schema = create_signal_schema(signal, source_path, manifest.data_schema)
enriched_signal_items = cast(Iterable[Item], wrap_in_dicts(values, spec))
for rowid, item in zip(df[ROWID], enriched_signal_items):
item[ROWID] = rowid
enriched_signal_items = list(enriched_signal_items)
parquet_filename, _ = write_items_to_parquet(
items=enriched_signal_items,
output_dir=output_dir,
schema=signal_schema,
filename_prefix='data',
shard_index=0,
num_shards=1)
signal_manifest = SignalManifest(
files=[parquet_filename],
data_schema=signal_schema,
signal=signal,
enriched_path=source_path,
parquet_id=make_parquet_id(signal, source_path, is_computed_signal=True))
signal_manifest_filepath = os.path.join(output_dir, SIGNAL_MANIFEST_FILENAME)
with open_file(signal_manifest_filepath, 'w') as f:
f.write(signal_manifest.json(exclude_none=True, indent=2))
self._update_config(signals=[SignalConfig(path=source_path, signal=signal)])
log(f'Wrote signal output to {output_dir}')
@override
def compute_embedding(self,
embedding: str,
path: Path,
task_step_id: Optional[TaskStepId] = None) -> None:
source_path = normalize_path(path)
manifest = self.manifest()
if task_step_id is None:
# Make a dummy task step so we report progress via tqdm.
task_step_id = ('', 0)
signal = get_signal_by_type(embedding, TextEmbeddingSignal)()
signal_col = Column(path=source_path, alias='value', signal_udf=signal)
select_rows_result = self.select_rows([ROWID, signal_col],
task_step_id=task_step_id,
resolve_span=True)
df = select_rows_result.df()
values = df['value']
enriched_path = _col_destination_path(signal_col, is_computed_signal=True)
output_dir = os.path.join(self.dataset_path, _signal_dir(enriched_path))
signal_schema = create_signal_schema(signal, source_path, manifest.data_schema)
write_embeddings_to_disk(
vector_store=self.vector_store, rowids=df[ROWID], signal_items=values, output_dir=output_dir)
del select_rows_result, df, values
gc.collect()
signal_manifest = SignalManifest(
files=[],
data_schema=signal_schema,
signal=signal,
enriched_path=source_path,
parquet_id=make_parquet_id(signal, source_path, is_computed_signal=True),
vector_store=self.vector_store)
signal_manifest_filepath = os.path.join(output_dir, SIGNAL_MANIFEST_FILENAME)
with open_file(signal_manifest_filepath, 'w') as f:
f.write(signal_manifest.json(exclude_none=True, indent=2))
self._update_config(embeddings=[EmbeddingConfig(path=source_path, embedding=embedding)])
log(f'Wrote embedding index to {output_dir}')
@override
def delete_signal(self, signal_path: Path) -> None:
signal_path = normalize_path(signal_path)
manifest = self.manifest()
if not manifest.data_schema.has_field(signal_path):
raise ValueError(f'Unknown signal path: {signal_path}')
output_dir = os.path.join(self.dataset_path, _signal_dir(signal_path))
shutil.rmtree(output_dir, ignore_errors=True)
def _validate_filters(self, filters: Sequence[Filter], col_aliases: dict[str, PathTuple],
manifest: DatasetManifest) -> None:
for filter in filters:
if filter.path[0] in col_aliases:
# This is a filter on a column alias, which is always allowed.
continue
current_field = Field(fields=manifest.data_schema.fields)
if filter.path == (ROWID,):
return
for path_part in filter.path:
if path_part == VALUE_KEY:
if not current_field.dtype:
raise ValueError(f'Unable to filter on path {filter.path}. The field has no value.')
continue
if current_field.fields:
if path_part not in current_field.fields:
raise ValueError(f'Unable to filter on path {filter.path}. '
f'Path part "{path_part}" not found in the dataset.')
current_field = current_field.fields[str(path_part)]
continue
elif current_field.repeated_field:
current_field = current_field.repeated_field
continue
else:
raise ValueError(f'Unable to filter on path {filter.path}. '
f'Path part "{path_part}" is not defined on a primitive value.')
while current_field.repeated_field:
current_field = current_field.repeated_field
filter.path = (*filter.path, PATH_WILDCARD)
if not current_field.dtype:
raise ValueError(f'Unable to filter on path {filter.path}. The field has no value.')
def _validate_udfs(self, udf_cols: Sequence[Column], source_schema: Schema) -> None:
for col in udf_cols:
path = col.path
# Signal transforms must operate on a leaf field.
leaf = source_schema.leafs.get(path)
if not leaf or not leaf.dtype:
raise ValueError(f'Leaf "{path}" not found in dataset. '
'Signal transforms must operate on a leaf field.')
# Signal transforms must have the same dtype as the leaf field.
signal = cast(Signal, col.signal_udf)
if not signal_type_supports_dtype(signal.input_type, leaf.dtype):
raise ValueError(f'Leaf "{path}" has dtype "{leaf.dtype}" which is not supported '
f'by "{signal.key()}" with signal input type "{signal.input_type}".')
def _validate_selection(self, columns: Sequence[Column], select_schema: Schema) -> None:
# Validate all the columns and make sure they exist in the `select_schema`.
for column in columns:
current_field = Field(fields=select_schema.fields)
path = column.path
if path == (ROWID,):
return
for path_part in path:
if path_part == VALUE_KEY:
if not current_field.dtype:
raise ValueError(f'Unable to select path {path}. The field that has no value.')
continue
if current_field.fields:
if path_part not in current_field.fields:
raise ValueError(f'Unable to select path {path}. '
f'Path part "{path_part}" not found in the dataset.')
current_field = current_field.fields[path_part]
continue
elif current_field.repeated_field:
if path_part.isdigit():
raise ValueError(f'Unable to select path {path}. Selecting a specific index of '
'a repeated field is currently not supported.')
if path_part != PATH_WILDCARD:
raise ValueError(f'Unable to select path {path}. '
f'Path part "{path_part}" should be a wildcard.')
current_field = current_field.repeated_field
elif not current_field.dtype:
raise ValueError(f'Unable to select path {path}. '
f'Path part "{path_part}" is not defined on a primitive value.')
def _validate_columns(self, columns: Sequence[Column], source_schema: Schema,
select_schema: Schema) -> None:
udf_cols = [col for col in columns if col.signal_udf]
self._validate_udfs(udf_cols, source_schema)
self._validate_selection(columns, select_schema)
def _validate_sort_path(self, path: PathTuple, schema: Schema) -> None:
current_field = Field(fields=schema.fields)
if path == (ROWID,):
return
for path_part in path:
if path_part == VALUE_KEY:
if not current_field.dtype:
raise ValueError(f'Unable to sort by path {path}. The field that has no value.')
continue
if current_field.fields:
if path_part not in current_field.fields:
raise ValueError(f'Unable to sort by path {path}. '
f'Path part "{path_part}" not found in the dataset.')
current_field = current_field.fields[path_part]
continue
elif current_field.repeated_field:
if path_part.isdigit():
raise ValueError(f'Unable to sort by path {path}. Selecting a specific index of '
'a repeated field is currently not supported.')
if path_part != PATH_WILDCARD:
raise ValueError(f'Unable to sort by path {path}. '
f'Path part "{path_part}" should be a wildcard.')
current_field = current_field.repeated_field
elif not current_field.dtype:
raise ValueError(f'Unable to sort by path {path}. '
f'Path part "{path_part}" is not defined on a primitive value.')
if not current_field.dtype:
raise ValueError(f'Unable to sort by path {path}. The field has no value.')
@override
@functools.cache # Cache stats for leaf paths since we ask on every dataset page refresh.
def stats(self, leaf_path: Path) -> StatsResult:
if not leaf_path:
raise ValueError('leaf_path must be provided')
path = normalize_path(leaf_path)
manifest = self.manifest()
leaf = manifest.data_schema.get_field(path)
# Find the inner-most leaf in case this field is repeated.
while leaf.repeated_field:
leaf = leaf.repeated_field
path = (*path, PATH_WILDCARD)
if not leaf.dtype:
raise ValueError(f'Leaf "{path}" not found in dataset')
duckdb_path = self._leaf_path_to_duckdb_path(path, manifest.data_schema)
inner_select = _select_sql(
duckdb_path, flatten=True, unnest=True, span_from=self._get_span_from(path, manifest))
# Compute the average length of text fields.
avg_text_length: Optional[int] = None
if leaf.dtype in (DataType.STRING, DataType.STRING_SPAN):
avg_length_query = f"""
SELECT avg(length(val))
FROM (SELECT {inner_select} AS val FROM t) USING SAMPLE {SAMPLE_AVG_TEXT_LENGTH};
"""
row = self._query(avg_length_query)[0]
if row[0] is not None:
avg_text_length = int(row[0])
total_count_query = f'SELECT count(val) FROM (SELECT {inner_select} as val FROM t)'
total_count = int(self._query(total_count_query)[0][0])
# Compute approximate count by sampling the data to avoid OOM.
if avg_text_length and avg_text_length > MAX_TEXT_LEN_DISTINCT_COUNT:
# Assume that every text field is unique.
approx_count_distinct = manifest.num_items
elif leaf.dtype == DataType.BOOLEAN:
approx_count_distinct = 2
else:
sample_size = TOO_MANY_DISTINCT
approx_count_query = f"""
SELECT approx_count_distinct(val) as approxCountDistinct
FROM (SELECT {inner_select} AS val FROM t) USING SAMPLE {sample_size};
"""
row = self._query(approx_count_query)[0]
approx_count_distinct = int(row[0])
# Adjust the counts for the sample size.
factor = max(1, total_count / sample_size)
approx_count_distinct = round(approx_count_distinct * factor)
result = StatsResult(
path=path,
total_count=total_count,
approx_count_distinct=approx_count_distinct,
avg_text_length=avg_text_length)
# Compute min/max values for ordinal leafs, without sampling the data.
if is_ordinal(leaf.dtype):
min_max_query = f"""
SELECT MIN(val) AS minVal, MAX(val) AS maxVal
FROM (SELECT {inner_select} as val FROM t)
{'WHERE NOT isnan(val)' if is_float(leaf.dtype) else ''}
"""
row = self._query(min_max_query)[0]
result.min_val, result.max_val = row
return result
@override
def select_groups(
self,
leaf_path: Path,
filters: Optional[Sequence[FilterLike]] = None,
sort_by: Optional[GroupsSortBy] = GroupsSortBy.COUNT,
sort_order: Optional[SortOrder] = SortOrder.DESC,
limit: Optional[int] = None,
bins: Optional[Union[Sequence[Bin], Sequence[float]]] = None) -> SelectGroupsResult:
if not leaf_path:
raise ValueError('leaf_path must be provided')
path = normalize_path(leaf_path)
manifest = self.manifest()
leaf = manifest.data_schema.get_field(path)
# Find the inner-most leaf in case this field is repeated.
while leaf.repeated_field:
leaf = leaf.repeated_field
path = (*path, PATH_WILDCARD)
if not leaf.dtype:
raise ValueError(f'Leaf "{path}" not found in dataset')
inner_val = 'inner_val'
outer_select = inner_val
# Normalize the bins to be `list[Bin]`.
named_bins = _normalize_bins(bins or leaf.bins)
stats = self.stats(leaf_path)
leaf_is_float = is_float(leaf.dtype)
leaf_is_integer = is_integer(leaf.dtype)
if not leaf.categorical and (leaf_is_float or leaf_is_integer):
if named_bins is None:
# Auto-bin.
named_bins = _auto_bins(stats, NUM_AUTO_BINS)
sql_bounds = []
for label, start, end in named_bins:
if start is None:
start = cast(float, "'-Infinity'")
if end is None:
end = cast(float, "'Infinity'")
sql_bounds.append(f"('{label}', {start}, {end})")
bin_index_col = 'col0'
bin_min_col = 'col1'
bin_max_col = 'col2'
is_nan_filter = f'NOT isnan({inner_val}) AND' if leaf_is_float else ''
# We cast the field to `double` so binning works for both `float` and `int` fields.
outer_select = f"""(
SELECT {bin_index_col} FROM (
VALUES {', '.join(sql_bounds)}
) WHERE {is_nan_filter}
{inner_val}::DOUBLE >= {bin_min_col} AND {inner_val}::DOUBLE < {bin_max_col}
)"""
else:
if stats.approx_count_distinct >= dataset.TOO_MANY_DISTINCT:
return SelectGroupsResult(too_many_distinct=True, counts=[], bins=named_bins)
count_column = 'count'
value_column = 'value'
limit_query = f'LIMIT {limit}' if limit else ''
duckdb_path = self._leaf_path_to_duckdb_path(path, manifest.data_schema)
inner_select = _select_sql(
duckdb_path, flatten=True, unnest=True, span_from=self._get_span_from(path, manifest))
filters, _ = self._normalize_filters(filters, col_aliases={}, udf_aliases={}, manifest=manifest)
filter_queries = self._create_where(manifest, filters, searches=[])
where_query = ''
if filter_queries:
where_query = f"WHERE {' AND '.join(filter_queries)}"
query = f"""
SELECT {outer_select} AS {value_column}, COUNT() AS {count_column}
FROM (SELECT {inner_select} AS {inner_val} FROM t {where_query})
GROUP BY {value_column}
ORDER BY {sort_by} {sort_order}
{limit_query}
"""
df = self._query_df(query)
counts = list(df.itertuples(index=False, name=None))
if is_temporal(leaf.dtype):
# Replace any NaT with None and pd.Timestamp to native datetime objects.
counts = [(None if pd.isnull(val) else val.to_pydatetime(), count) for val, count in counts]
return SelectGroupsResult(too_many_distinct=False, counts=counts, bins=named_bins)
def _topk_udf_to_sort_by(
self,
udf_columns: list[Column],
sort_by: list[PathTuple],
limit: Optional[int],
sort_order: Optional[SortOrder],
) -> Optional[Column]:
if (sort_order != SortOrder.DESC) or (not limit) or (not sort_by):
return None
if len(sort_by) < 1:
return None
primary_sort_by = sort_by[0]
udf_cols_to_sort_by = [
udf_col for udf_col in udf_columns if udf_col.alias == primary_sort_by[0] or
_path_contains(_col_destination_path(udf_col), primary_sort_by)
]
if not udf_cols_to_sort_by:
return None
udf_col = udf_cols_to_sort_by[0]
if udf_col.signal_udf and not isinstance(udf_col.signal_udf, VectorSignal):
return None
return udf_col
def _normalize_columns(self, columns: Optional[Sequence[ColumnId]], schema: Schema,
combine_columns: bool) -> list[Column]:
"""Normalizes the columns to a list of `Column` objects."""
cols = [column_from_identifier(col) for col in columns or []]
star_in_cols = any(col.path == (PATH_WILDCARD,) for col in cols)
if not cols or star_in_cols:
# Select all columns.
cols.extend([Column((name,)) for name in schema.fields.keys() if name != ROWID])
if not combine_columns:
# Select all the signal top-level fields.
for path, field in schema.all_fields:
if field.signal:
cols.append(Column(path))
if star_in_cols:
cols = [col for col in cols if col.path != (PATH_WILDCARD,)]
return cols
def _merge_sorts(self, search_udfs: list[DuckDBSearchUDF], sort_by: Optional[Sequence[Path]],
sort_order: Optional[SortOrder]) -> list[SortResult]:
# True when the user has explicitly sorted by the alias of a search UDF (e.g. in ASC order).
is_explicit_search_sort = False
for sort_by_path in sort_by or []:
for search_udf in search_udfs:
if column_paths_match(sort_by_path, search_udf.output_path):
is_explicit_search_sort = True
break
sort_results: list[SortResult] = []
if sort_by and not is_explicit_search_sort:
if not sort_order:
raise ValueError('`sort_order` is required when `sort_by` is specified.')
# If the user has explicitly set a sort by, and it's not a search UDF alias, override.
sort_results = [
SortResult(path=normalize_path(sort_by), order=sort_order) for sort_by in sort_by if sort_by
]
else:
search_udfs_with_sort = [search_udf for search_udf in search_udfs if search_udf.sort]
if search_udfs_with_sort:
# Override the sort by the last search sort order when the user hasn't provided an
# explicit sort order.
last_search_udf = search_udfs_with_sort[-1]
assert last_search_udf.sort, 'Expected search UDFs with sort to have a sort.'
udf_sort_path, udf_sort_order = last_search_udf.sort
sort_results = [
SortResult(
path=udf_sort_path,
order=sort_order or udf_sort_order,
search_index=len(search_udfs_with_sort) - 1)
]
return sort_results
@override
def select_rows(self,
columns: Optional[Sequence[ColumnId]] = None,
searches: Optional[Sequence[Search]] = None,
filters: Optional[Sequence[FilterLike]] = None,
sort_by: Optional[Sequence[Path]] = None,
sort_order: Optional[SortOrder] = SortOrder.DESC,
limit: Optional[int] = None,
offset: Optional[int] = 0,
task_step_id: Optional[TaskStepId] = None,
resolve_span: bool = False,
combine_columns: bool = False,
user: Optional[UserInfo] = None) -> SelectRowsResult:
manifest = self.manifest()
cols = self._normalize_columns(columns, manifest.data_schema, combine_columns)
offset = offset or 0
schema = manifest.data_schema
if combine_columns:
schema = self.select_rows_schema(
columns, sort_by, sort_order, searches, combine_columns=True).data_schema
self._validate_columns(cols, manifest.data_schema, schema)
self._normalize_searches(searches, manifest)
search_udfs = self._search_udfs(searches, manifest)
cols.extend([search_udf.udf for search_udf in search_udfs])
udf_columns = [col for col in cols if col.signal_udf]
temp_rowid_selected = False
for col in cols:
if col.path == (ROWID,):
temp_rowid_selected = False
break
if isinstance(col.signal_udf, VectorSignal):
temp_rowid_selected = True
if temp_rowid_selected:
cols.append(Column(ROWID))
# Set extra information on any concept signals.
for udf_col in udf_columns:
if isinstance(udf_col.signal_udf, (ConceptSignal, ConceptLabelsSignal)):
# Concept are access controlled so we tell it about the user.
udf_col.signal_udf.set_user(user)
# Decide on the exact sorting order.
sort_results = self._merge_sorts(search_udfs, sort_by, sort_order)
sort_by = cast(list[PathTuple],
[(sort.alias,) if sort.alias else sort.path for sort in sort_results])
# Choose the first sort order as we only support a single sort order for now.
sort_order = sort_results[0].order if sort_results else None
col_aliases: dict[str, PathTuple] = {col.alias: col.path for col in cols if col.alias}
udf_aliases: dict[str, PathTuple] = {
col.alias: col.path for col in cols if col.signal_udf and col.alias
}
path_to_udf_col_name: dict[PathTuple, str] = {}
for col in cols:
if col.signal_udf:
alias = col.alias or _unique_alias(col)
dest_path = _col_destination_path(col)
path_to_udf_col_name[dest_path] = alias
# Filtering and searching.
where_query = ''
filters, udf_filters = self._normalize_filters(filters, col_aliases, udf_aliases, manifest)
filter_queries = self._create_where(manifest, filters, searches)
if filter_queries:
where_query = f"WHERE {' AND '.join(filter_queries)}"
total_num_rows = manifest.num_items
con = self.con.cursor()
topk_udf_col = self._topk_udf_to_sort_by(udf_columns, sort_by, limit, sort_order)
if topk_udf_col:
path_keys: Optional[list[PathKey]] = None
if where_query:
# If there are filters, we need to send rowids to the top k query.
df = con.execute(f'SELECT {ROWID} FROM t {where_query}').df()
total_num_rows = len(df)
# Convert rowids to path keys.
path_keys = [(rowid,) for rowid in df[ROWID]]
if path_keys is not None and len(path_keys) == 0:
where_query = 'WHERE false'
else:
topk_signal = cast(VectorSignal, topk_udf_col.signal_udf)
# The input is an embedding.
vector_index = self._get_vector_db_index(topk_signal.embedding, topk_udf_col.path)
k = (limit or 0) + offset
path_id = f'{self.namespace}/{self.dataset_name}:{topk_udf_col.path}'
with DebugTimer(f'Computing topk on {path_id} with embedding "{topk_signal.embedding}" '
f'and vector store "{vector_index._vector_store.name}"'):
topk = topk_signal.vector_compute_topk(k, vector_index, path_keys)
topk_rowids = list(dict.fromkeys([cast(str, rowid) for (rowid, *_), _ in topk]))
# Update the offset to account for the number of unique rowids.
offset = len(dict.fromkeys([cast(str, rowid) for (rowid, *_), _ in topk[:offset]]))
# Ignore all the other filters and filter DuckDB results only by the top k rowids.
rowid_filter = Filter(path=(ROWID,), op='in', value=topk_rowids)
filter_query = self._create_where(manifest, [rowid_filter])[0]
where_query = f'WHERE {filter_query}'
# Map a final column name to a list of temporary namespaced column names that need to be merged.
columns_to_merge: dict[str, dict[str, Column]] = {}
temp_column_to_offset_column: dict[str, tuple[str, Field]] = {}
select_queries: list[str] = []
for column in cols:
path = column.path
# If the signal is vector-based, we don't need to select the actual data, just the rowids
# plus an arbitrarily nested array of `None`s`.
empty = bool(column.signal_udf and schema.get_field(path).dtype == DataType.EMBEDDING)
select_sqls: list[str] = []
final_col_name = column.alias or _unique_alias(column)
if final_col_name not in columns_to_merge:
columns_to_merge[final_col_name] = {}
duckdb_paths = self._column_to_duckdb_paths(column, schema, combine_columns)
span_from = self._get_span_from(path, manifest) if resolve_span or column.signal_udf else None
for parquet_id, duckdb_path in duckdb_paths:
sql = _select_sql(
duckdb_path, flatten=False, unnest=False, empty=empty, span_from=span_from)
temp_column_name = (
final_col_name if len(duckdb_paths) == 1 else f'{final_col_name}/{parquet_id}')
select_sqls.append(f'{sql} AS {_escape_string_literal(temp_column_name)}')
columns_to_merge[final_col_name][temp_column_name] = column
if column.signal_udf and span_from and _schema_has_spans(column.signal_udf.fields()):
sql = _select_sql(duckdb_path, flatten=False, unnest=False, empty=empty, span_from=None)
temp_offset_column_name = f'{temp_column_name}/offset'
temp_offset_column_name = temp_offset_column_name.replace("'", "\\'")
select_sqls.append(f'{sql} AS {_escape_string_literal(temp_offset_column_name)}')
temp_column_to_offset_column[temp_column_name] = (temp_offset_column_name,
column.signal_udf.fields())
# `select_sqls` can be empty if this column points to a path that will be created by a UDF.
if select_sqls:
select_queries.append(', '.join(select_sqls))
sort_sql_before_udf: list[str] = []
sort_sql_after_udf: list[str] = []
for path in sort_by:
# We only allow sorting by nodes with a value.
first_subpath = str(path[0])
rest_of_path = path[1:]
signal_alias = '.'.join(map(str, path))
udf_path = _path_to_udf_duckdb_path(path, path_to_udf_col_name)
if not udf_path:
# Re-route the path if it starts with an alias by pointing it to the actual path.
if first_subpath in col_aliases:
path = (*col_aliases[first_subpath], *rest_of_path)
self._validate_sort_path(path, schema)
path = self._leaf_path_to_duckdb_path(path, schema)
else:
path = udf_path
sort_sql = _select_sql(path, flatten=True, unnest=False)
has_repeated_field = any(subpath == PATH_WILDCARD for subpath in path)
if has_repeated_field:
sort_sql = (f'list_min({sort_sql})'
if sort_order == SortOrder.ASC else f'list_max({sort_sql})')
# Separate sort columns into two groups: those that need to be sorted before and after UDFs.
if udf_path:
sort_sql_after_udf.append(sort_sql)
else:
sort_sql_before_udf.append(sort_sql)
order_query = ''
if sort_sql_before_udf:
order_query = (f'ORDER BY {", ".join(sort_sql_before_udf)} '
f'{cast(SortOrder, sort_order).value}')
limit_query = ''
if limit:
if topk_udf_col:
limit_query = f'LIMIT {limit + offset}'
elif sort_sql_after_udf:
limit_query = ''
else:
limit_query = f'LIMIT {limit} OFFSET {offset}'
if not topk_udf_col and where_query:
total_num_rows = cast(tuple,
con.execute(f'SELECT COUNT(*) FROM t {where_query}').fetchone())[0]
# Fetch the data from DuckDB.
df = con.execute(f"""
SELECT {', '.join(select_queries)} FROM t
{where_query}
{order_query}
{limit_query}
""").df()
df = _replace_nan_with_none(df)
# Run UDFs on the transformed columns.
for udf_col in udf_columns:
signal = cast(Signal, udf_col.signal_udf)
signal_alias = udf_col.alias or _unique_alias(udf_col)
temp_signal_cols = columns_to_merge[signal_alias]
if len(temp_signal_cols) != 1:
raise ValueError(
f'Unable to compute signal {signal.name}. Signal UDFs only operate on leafs, but got '
f'{len(temp_signal_cols)} underlying columns that contain data related to {udf_col.path}.'
)
signal_column = list(temp_signal_cols.keys())[0]
input = df[signal_column]
path_id = f'{self.namespace}/{self.dataset_name}:{udf_col.path}'
with DebugTimer(f'Computing signal "{signal.name}" on {path_id}'):
signal.setup()
step_description = f'Computing {signal.key()} on {path_id}'
if isinstance(signal, VectorSignal):
embedding_signal = signal
vector_store = self._get_vector_db_index(embedding_signal.embedding, udf_col.path)
flat_keys = list(flatten_keys(df[ROWID], input))
signal_out = sparse_to_dense_compute(
iter(flat_keys), lambda keys: embedding_signal.vector_compute(keys, vector_store))
# Add progress.
if task_step_id is not None:
signal_out = progress(
signal_out,
task_step_id=task_step_id,
estimated_len=len(flat_keys),
step_description=step_description)
df[signal_column] = deep_unflatten(signal_out, input)
else:
num_rich_data = count_primitives(input)
flat_input = cast(Iterator[Optional[RichData]], deep_flatten(input))
signal_out = sparse_to_dense_compute(
flat_input, lambda x: signal.compute(cast(Iterable[RichData], x)))
# Add progress.
if task_step_id is not None:
signal_out = progress(
signal_out,
task_step_id=task_step_id,
estimated_len=num_rich_data,
step_description=step_description)
signal_out_list = list(signal_out)
if signal_column in temp_column_to_offset_column:
offset_column_name, field = temp_column_to_offset_column[signal_column]
nested_spans: Iterable[Item] = df[offset_column_name]
flat_spans = deep_flatten(nested_spans)
for span, item in zip(flat_spans, signal_out_list):
_offset_any_span(cast(int, span[VALUE_KEY][TEXT_SPAN_START_FEATURE]), item, field)
if len(signal_out_list) != num_rich_data:
raise ValueError(
f'The signal generated {len(signal_out_list)} values but the input data had '
f"{num_rich_data} values. This means the signal either didn't generate a "
'"None" for a sparse output, or generated too many items.')
df[signal_column] = deep_unflatten(signal_out_list, input)
signal.teardown()
if not df.empty and (udf_filters or sort_sql_after_udf):
# Re-upload the udf outputs to duckdb so we can filter/sort on them.
rel = con.from_df(df)
if udf_filters:
udf_filter_queries = self._create_where(manifest, udf_filters)
if udf_filter_queries:
rel = rel.filter(' AND '.join(udf_filter_queries))
total_num_rows = cast(tuple, rel.count('*').fetchone())[0]
if sort_sql_after_udf:
if not sort_order:
raise ValueError('`sort_order` is required when `sort_by` is specified.')
rel = rel.order(f'{", ".join(sort_sql_after_udf)} {sort_order.value}')
if limit:
rel = rel.limit(limit, offset)
df = _replace_nan_with_none(rel.df())
if temp_rowid_selected:
del df[ROWID]
del columns_to_merge[ROWID]
if combine_columns:
all_columns: dict[str, Column] = {}
for col_dict in columns_to_merge.values():
all_columns.update(col_dict)
columns_to_merge = {'*': all_columns}
for offset_column, _ in temp_column_to_offset_column.values():
del df[offset_column]
for final_col_name, temp_columns in columns_to_merge.items():
for temp_col_name, column in temp_columns.items():
if combine_columns:
dest_path = _col_destination_path(column)
spec = _split_path_into_subpaths_of_lists(dest_path)
df[temp_col_name] = wrap_in_dicts(df[temp_col_name], spec)
# If the temp col name is the same as the final name, we can skip merging. This happens when
# we select a source leaf column.
if temp_col_name == final_col_name:
continue
if final_col_name not in df:
df[final_col_name] = df[temp_col_name]
else:
df[final_col_name] = merge_series(df[final_col_name], df[temp_col_name])
del df[temp_col_name]
con.close()
if combine_columns:
# Since we aliased every column to `*`, the object with have only '*' as the key. We need to
# elevate the all the columns under '*'.
df = pd.DataFrame.from_records(df['*'])
return SelectRowsResult(df, total_num_rows)
@override
def select_rows_schema(self,
columns: Optional[Sequence[ColumnId]] = None,
sort_by: Optional[Sequence[Path]] = None,
sort_order: Optional[SortOrder] = None,
searches: Optional[Sequence[Search]] = None,
combine_columns: bool = False) -> SelectRowsSchemaResult:
"""Returns the schema of the result of `select_rows` above with the same arguments."""
if not combine_columns:
raise NotImplementedError(
'select_rows_schema with combine_columns=False is not yet supported.')
manifest = self.manifest()
cols = self._normalize_columns(columns, manifest.data_schema, combine_columns)
self._normalize_searches(searches, manifest)
search_udfs = self._search_udfs(searches, manifest)
cols.extend([search_udf.udf for search_udf in search_udfs])
udfs: list[SelectRowsSchemaUDF] = []
col_schemas: list[Schema] = []
for col in cols:
dest_path = _col_destination_path(col)
if col.signal_udf:
udfs.append(SelectRowsSchemaUDF(path=dest_path, alias=col.alias))
field = col.signal_udf.fields()
field.signal = col.signal_udf.dict()
elif manifest.data_schema.has_field(dest_path):
field = manifest.data_schema.get_field(dest_path)
else:
# This column might refer to an output of a udf. We postpone validation to later.
continue
col_schemas.append(_make_schema_from_path(dest_path, field))
sort_results = self._merge_sorts(search_udfs, sort_by, sort_order)
search_results = [
SearchResultInfo(search_path=search_udf.search_path, result_path=search_udf.output_path)
for search_udf in search_udfs
]
new_schema = merge_schemas(col_schemas)
# Now that we have the new schema, we can validate all the column selections.
self._validate_columns(cols, manifest.data_schema, new_schema)
return SelectRowsSchemaResult(
data_schema=new_schema, udfs=udfs, search_results=search_results, sorts=sort_results or None)
@override
def media(self, item_id: str, leaf_path: Path) -> MediaResult:
raise NotImplementedError('Media is not yet supported for the DuckDB implementation.')
def _get_span_from(self, path: PathTuple, manifest: DatasetManifest) -> Optional[PathTuple]:
leafs = manifest.data_schema.leafs
# Remove the value key so we can check the dtype from leafs.
span_path = path[:-1] if path[-1] == VALUE_KEY else path
is_span = (span_path in leafs and leafs[span_path].dtype == DataType.STRING_SPAN)
return _derived_from_path(path, manifest.data_schema) if is_span else None
def _leaf_path_to_duckdb_path(self, leaf_path: PathTuple, schema: Schema) -> PathTuple:
((_, duckdb_path),) = self._column_to_duckdb_paths(
Column(leaf_path), schema, combine_columns=False, select_leaf=True)
return duckdb_path
def _column_to_duckdb_paths(self,
column: Column,
schema: Schema,
combine_columns: bool,
select_leaf: bool = False) -> list[tuple[str, PathTuple]]:
path = column.path
parquet_manifests: list[Union[SourceManifest, SignalManifest]] = [
self._source_manifest, *self._signal_manifests
]
duckdb_paths: list[tuple[str, PathTuple]] = []
source_has_path = False
select_leaf = select_leaf or column.signal_udf is not None
if path == (ROWID,):
return [('source', path)]
for m in parquet_manifests:
if not m.files:
continue
# Skip this parquet file if it doesn't contain the path.
if not schema_contains_path(m.data_schema, path):
continue
if isinstance(m, SourceManifest):
source_has_path = True
if isinstance(m, SignalManifest) and source_has_path and not combine_columns:
# Skip this signal if the source already has the path and we are not combining columns.
continue
# Skip this parquet file if the path doesn't have a dtype.
if select_leaf and not m.data_schema.get_field(path).dtype:
continue
duckdb_path = path
parquet_id = 'source'
if isinstance(m, SignalManifest):
duckdb_path = (m.parquet_id, *path[1:])
parquet_id = m.parquet_id
duckdb_paths.append((parquet_id, duckdb_path))
if not duckdb_paths:
# This path is probably a result of a udf. Make sure the result schema contains it.
if not schema.has_field(path):
raise ValueError(f'Invalid path "{path}": No manifest contains path. Valid paths: '
f'{list(schema.leafs.keys())}')
return duckdb_paths
def _normalize_filters(self, filter_likes: Optional[Sequence[FilterLike]],
col_aliases: dict[str, PathTuple], udf_aliases: dict[str, PathTuple],
manifest: DatasetManifest) -> tuple[list[Filter], list[Filter]]:
"""Normalize `FilterLike` to `Filter` and split into filters on source and filters on UDFs."""
filter_likes = filter_likes or []
filters: list[Filter] = []
udf_filters: list[Filter] = []
for filter in filter_likes:
# Normalize `FilterLike` to `Filter`.
if not isinstance(filter, Filter):
if len(filter) == 3:
path, op, value = filter # type: ignore
elif len(filter) == 2:
path, op = filter # type: ignore
value = None
else:
raise ValueError(f'Invalid filter: {filter}. Must be a tuple with 2 or 3 elements.')
filter = Filter(path=normalize_path(path), op=op, value=value)
if str(filter.path[0]) in udf_aliases:
udf_filters.append(filter)
else:
filters.append(filter)
self._validate_filters(filters, col_aliases, manifest)
return filters, udf_filters
def _normalize_searches(self, searches: Optional[Sequence[Search]],
manifest: DatasetManifest) -> None:
"""Validate searches."""
if not searches:
return
for search in searches:
search.path = normalize_path(search.path)
field = manifest.data_schema.get_field(search.path)
if field.dtype != DataType.STRING:
raise ValueError(f'Invalid search path: {search.path}. '
f'Must be a string field, got dtype {field.dtype}')
def _search_udfs(self, searches: Optional[Sequence[Search]],
manifest: DatasetManifest) -> list[DuckDBSearchUDF]:
searches = searches or []
"""Create a UDF for each search for finding the location of the text with spans."""
search_udfs: list[DuckDBSearchUDF] = []
for search in searches:
search_path = normalize_path(search.path)
if search.type == 'keyword':
udf = Column(path=search_path, signal_udf=SubstringSignal(query=search.query))
search_udfs.append(
DuckDBSearchUDF(
udf=udf,
search_path=search_path,
output_path=(*_col_destination_path(udf), PATH_WILDCARD)))
elif search.type == 'semantic' or search.type == 'concept':
embedding = search.embedding
if not embedding:
raise ValueError(f'Please provide an embedding for semantic search. Got search: {search}')
try:
manifest.data_schema.get_field((*search_path, embedding))
except Exception as e:
raise ValueError(
f'Embedding {embedding} has not been computed. '
f'Please compute the embedding index before issuing a {search.type} query.') from e
search_signal: Optional[Signal] = None
if search.type == 'semantic':
search_signal = SemanticSimilaritySignal(query=search.query, embedding=search.embedding)
elif search.type == 'concept':
search_signal = ConceptSignal(
namespace=search.concept_namespace,
concept_name=search.concept_name,
embedding=search.embedding)
# Add the label UDF.
concept_labels_signal = ConceptLabelsSignal(
namespace=search.concept_namespace, concept_name=search.concept_name)
concept_labels_udf = Column(path=search_path, signal_udf=concept_labels_signal)
search_udfs.append(
DuckDBSearchUDF(
udf=concept_labels_udf,
search_path=search_path,
output_path=_col_destination_path(concept_labels_udf),
sort=None))
udf = Column(path=search_path, signal_udf=search_signal)
output_path = _col_destination_path(udf)
search_udfs.append(
DuckDBSearchUDF(
udf=udf,
search_path=search_path,
output_path=_col_destination_path(udf),
sort=((*output_path, PATH_WILDCARD, 'score'), SortOrder.DESC)))
else:
raise ValueError(f'Unknown search operator {search.type}.')
return search_udfs
def _create_where(self,
manifest: DatasetManifest,
filters: list[Filter],
searches: Optional[Sequence[Search]] = []) -> list[str]:
if not filters and not searches:
return []
searches = searches or []
sql_filter_queries: list[str] = []
# Add search where queries.
for search in searches:
duckdb_path = self._leaf_path_to_duckdb_path(
normalize_path(search.path), manifest.data_schema)
select_str = _select_sql(duckdb_path, flatten=False, unnest=False)
if search.type == 'keyword':
sql_op = 'ILIKE'
query_val = _escape_like_value(search.query)
elif search.type == 'semantic' or search.type == 'concept':
# Semantic search and concepts don't yet filter.
continue
else:
raise ValueError(f'Unknown search operator {search.type}.')
filter_query = f'{select_str} {sql_op} {query_val}'
sql_filter_queries.append(filter_query)
# Add filter where queries.
for f in filters:
duckdb_path = self._leaf_path_to_duckdb_path(f.path, manifest.data_schema)
select_str = _select_sql(
duckdb_path, flatten=True, unnest=False, span_from=self._get_span_from(f.path, manifest))
is_array = any(subpath == PATH_WILDCARD for subpath in f.path)
nan_filter = ''
field = manifest.data_schema.get_field(f.path)
filter_nans = field.dtype and is_float(field.dtype)
if f.op in BINARY_OPS:
sql_op = BINARY_OP_TO_SQL[cast(BinaryOp, f.op)]
filter_val = cast(FeatureValue, f.value)
if isinstance(filter_val, str):
filter_val = _escape_string_literal(filter_val)
elif isinstance(filter_val, bytes):
filter_val = _bytes_to_blob_literal(filter_val)
else:
filter_val = str(filter_val)
if is_array:
nan_filter = 'NOT isnan(x) AND' if filter_nans else ''
filter_query = (f'len(list_filter({select_str}, '
f'x -> {nan_filter} x {sql_op} {filter_val})) > 0')
else:
nan_filter = f'NOT isnan({select_str}) AND' if filter_nans else ''
filter_query = f'{nan_filter} {select_str} {sql_op} {filter_val}'
elif f.op in UNARY_OPS:
if f.op == 'exists':
filter_query = f'len({select_str}) > 0' if is_array else f'{select_str} IS NOT NULL'
else:
raise ValueError(f'Unary op: {f.op} is not yet supported')
elif f.op in LIST_OPS:
if f.op == 'in':
filter_list_val = cast(FeatureListValue, f.value)
if not isinstance(filter_list_val, list):
raise ValueError('filter with array value can only use the IN comparison')
wrapped_filter_val = [f"'{part}'" for part in filter_list_val]
filter_val = f'({", ".join(wrapped_filter_val)})'
filter_query = f'{select_str} IN {filter_val}'
else:
raise ValueError(f'List op: {f.op} is not yet supported')
else:
raise ValueError(f'Invalid filter op: {f.op}')
sql_filter_queries.append(filter_query)
return sql_filter_queries
def _execute(self, query: str) -> duckdb.DuckDBPyConnection:
"""Execute a query in duckdb."""
# FastAPI is multi-threaded so we have to create a thread-specific connection cursor to allow
# these queries to be thread-safe.
local_con = self.con.cursor()
if not env('DEBUG', False):
return local_con.execute(query)
# Debug mode.
log('Executing:')
log(query)
with DebugTimer('Query'):
return local_con.execute(query)
def _query(self, query: str) -> list[tuple]:
result = self._execute(query)
rows = result.fetchall()
result.close()
return rows
def _query_df(self, query: str) -> pd.DataFrame:
"""Execute a query that returns a data frame."""
result = self._execute(query)
df = _replace_nan_with_none(result.df())
result.close()
return df
def _path_to_col(self, path: Path, quote_each_part: bool = True) -> str:
"""Convert a path to a column name."""
if isinstance(path, str):
path = (path,)
return '.'.join([
f'{_escape_col_name(path_comp)}' if quote_each_part else str(path_comp) for path_comp in path
])
def _get_selection(self, columns: Optional[Sequence[ColumnId]] = None) -> str:
"""Get the selection clause for download a dataset."""
manifest = self.manifest()
cols = self._normalize_columns(columns, manifest.data_schema, combine_columns=False)
schema = manifest.data_schema
self._validate_columns(cols, manifest.data_schema, schema)
select_queries: list[str] = []
for column in cols:
col_name = column.alias or _unique_alias(column)
duckdb_paths = self._column_to_duckdb_paths(column, schema, combine_columns=False)
if not duckdb_paths:
raise ValueError(f'Cannot download path {column.path} which does not exist in the dataset.')
if len(duckdb_paths) > 1:
raise ValueError(
f'Cannot download path {column.path} which spans multiple parquet files: {duckdb_paths}')
_, duckdb_path = duckdb_paths[0]
sql = _select_sql(duckdb_path, flatten=False, unnest=False)
select_queries.append(f'{sql} AS {_escape_string_literal(col_name)}')
return ', '.join(select_queries)
@override
def to_json(self,
filepath: Union[str, pathlib.Path],
jsonl: bool = True,
columns: Optional[Sequence[ColumnId]] = None) -> None:
selection = self._get_selection(columns)
self._execute(f"COPY (SELECT {selection} FROM t) TO '{filepath}' "
f"(FORMAT JSON, ARRAY {'FALSE' if jsonl else 'TRUE'})")
log(f'Dataset exported to {filepath}')
@override
def to_pandas(self, columns: Optional[Sequence[ColumnId]] = None) -> pd.DataFrame:
selection = self._get_selection(columns)
return self._query_df(f'SELECT {selection} FROM t')
@override
def to_csv(self,
filepath: Union[str, pathlib.Path],
columns: Optional[Sequence[ColumnId]] = None) -> None:
selection = self._get_selection(columns)
self._execute(f"COPY (SELECT {selection} FROM t) TO '{filepath}' (FORMAT CSV, HEADER)")
log(f'Dataset exported to {filepath}')
@override
def to_parquet(self,
filepath: Union[str, pathlib.Path],
columns: Optional[Sequence[ColumnId]] = None) -> None:
selection = self._get_selection(columns)
self._execute(f"COPY (SELECT {selection} FROM t) TO '{filepath}' (FORMAT PARQUET)")
log(f'Dataset exported to {filepath}')
def _escape_string_literal(string: str) -> str:
string = string.replace("'", "''")
return f"'{string}'"
def _escape_col_name(col_name: str) -> str:
col_name = col_name.replace('"', '""')
return f'"{col_name}"'
def _escape_like_value(value: str) -> str:
value = value.replace('%', '\\%').replace('_', '\\_')
return f"'%{value}%' ESCAPE '\\'"
def _inner_select(sub_paths: list[PathTuple],
inner_var: Optional[str] = None,
empty: bool = False,
span_from: Optional[PathTuple] = None) -> str:
"""Recursively generate the inner select statement for a list of sub paths."""
current_sub_path = sub_paths[0]
lambda_var = inner_var + 'x' if inner_var else 'x'
if not inner_var:
lambda_var = 'x'
inner_var = _escape_col_name(current_sub_path[0])
current_sub_path = current_sub_path[1:]
# Select the path inside structs. E.g. x['a']['b']['c'] given current_sub_path = [a, b, c].
path_key = inner_var + ''.join([f'[{_escape_string_literal(p)}]' for p in current_sub_path])
if len(sub_paths) == 1:
if span_from:
derived_col = _select_sql(span_from, flatten=False, unnest=False)
path_key = (f'{derived_col}[{path_key}.{VALUE_KEY}.{TEXT_SPAN_START_FEATURE}+1:'
f'{path_key}.{VALUE_KEY}.{TEXT_SPAN_END_FEATURE}]')
return 'NULL' if empty else path_key
return (f'list_transform({path_key}, {lambda_var} -> '
f'{_inner_select(sub_paths[1:], lambda_var, empty, span_from)})')
def _split_path_into_subpaths_of_lists(leaf_path: PathTuple) -> list[PathTuple]:
"""Split a path into a subpath of lists.
E.g. [a, b, c, *, d, *, *] gets splits [[a, b, c], [d], [], []].
"""
sub_paths: list[PathTuple] = []
offset = 0
while offset <= len(leaf_path):
new_offset = leaf_path.index(PATH_WILDCARD,
offset) if PATH_WILDCARD in leaf_path[offset:] else len(leaf_path)
sub_path = leaf_path[offset:new_offset]
sub_paths.append(sub_path)
offset = new_offset + 1
return sub_paths
def _select_sql(path: PathTuple,
flatten: bool,
unnest: bool,
empty: bool = False,
span_from: Optional[PathTuple] = None) -> str:
"""Create a select column for a path.
Args:
path: A path to a feature. E.g. ['a', 'b', 'c'].
flatten: Whether to flatten the result.
unnest: Whether to unnest the result.
empty: Whether to return an empty list (used for embedding signals that don't need the data).
span_from: The path this span is derived from. If specified, the span will be resolved
to a substring of the original string.
"""
sub_paths = _split_path_into_subpaths_of_lists(path)
selection = _inner_select(sub_paths, None, empty, span_from)
# We only flatten when the result of a nested list to avoid segfault.
is_result_nested_list = len(sub_paths) >= 3 # E.g. subPaths = [[a, b, c], *, *].
if flatten and is_result_nested_list:
selection = f'flatten({selection})'
# We only unnest when the result is a list. // E.g. subPaths = [[a, b, c], *].
is_result_a_list = len(sub_paths) >= 2
if unnest and is_result_a_list:
selection = f'unnest({selection})'
return selection
def read_source_manifest(dataset_path: str) -> SourceManifest:
"""Read the manifest file."""
with open_file(os.path.join(dataset_path, MANIFEST_FILENAME), 'r') as f:
return SourceManifest.parse_raw(f.read())
def _signal_dir(enriched_path: PathTuple) -> str:
"""Get the filename prefix for a signal parquet file."""
path_without_wildcards = (p for p in enriched_path if p != PATH_WILDCARD)
return os.path.join(*path_without_wildcards)
def split_column_name(column: str, split_name: str) -> str:
"""Get the name of a split column."""
return f'{column}.{split_name}'
def split_parquet_prefix(column_name: str, splitter_name: str) -> str:
"""Get the filename prefix for a split parquet file."""
return f'{column_name}.{splitter_name}'
def _bytes_to_blob_literal(bytes: bytes) -> str:
"""Convert bytes to a blob literal."""
escaped_hex = re.sub(r'(.{2})', r'\\x\1', bytes.hex())
return f"'{escaped_hex}'::BLOB"
class SignalManifest(BaseModel):
"""The manifest that describes a signal computation including schema and parquet files."""
# List of a parquet filepaths storing the data. The paths are relative to the manifest.
files: list[str]
# An identifier for this parquet table. Will be used as the view name in SQL.
parquet_id: str
data_schema: Schema
signal: Signal
# The column path that this signal is derived from.
enriched_path: PathTuple
# The name of the vector store. Present when the signal is an embedding.
vector_store: Optional[str] = None
@validator('signal', pre=True)
def parse_signal(cls, signal: dict) -> Signal:
"""Parse a signal to its specific subclass instance."""
return resolve_signal(signal)
def _merge_cells(dest_cell: Item, source_cell: Item) -> Item:
if source_cell is None or isinstance(source_cell, float) and math.isnan(source_cell):
# Nothing to merge here (missing value).
return dest_cell
if isinstance(dest_cell, dict):
if isinstance(source_cell, list):
raise ValueError(f'Failed to merge cells. Destination is a dict ({dest_cell!r}), '
f'but source is a list ({source_cell!r}).')
if isinstance(source_cell, dict):
res = {**dest_cell}
for key, value in source_cell.items():
res[key] = (value if key not in dest_cell else _merge_cells(dest_cell[key], value))
return res
else:
return {VALUE_KEY: source_cell, **dest_cell}
elif isinstance(dest_cell, list):
if not isinstance(source_cell, list):
raise ValueError('Failed to merge cells. Destination is a list, but source is not.')
return [
_merge_cells(dest_subcell, source_subcell)
for dest_subcell, source_subcell in zip(dest_cell, source_cell)
]
else:
# The destination is a primitive.
if isinstance(source_cell, list):
raise ValueError(f'Failed to merge cells. Destination is a primitive ({dest_cell!r}), '
f'but source is a list ({source_cell!r}).')
if isinstance(source_cell, dict):
return {VALUE_KEY: dest_cell, **source_cell}
else:
# Primitives can be merged together if they are equal. This can happen if a user selects a
# column that is the child of another.
# NOTE: This can be removed if we fix https://github.com/lilacai/lilac/issues/166.
if source_cell != dest_cell:
raise ValueError(f'Cannot merge source "{source_cell!r}" into destination "{dest_cell!r}"')
return dest_cell
def merge_series(destination: pd.Series, source: pd.Series) -> list[Item]:
"""Merge two series of values recursively."""
return _merge_cells(destination.tolist(), source.tolist())
def _unique_alias(column: Column) -> str:
"""Get a unique alias for a selection column."""
if column.signal_udf:
return make_parquet_id(column.signal_udf, column.path)
return '.'.join(map(str, column.path))
def _path_contains(parent_path: PathTuple, child_path: PathTuple) -> bool:
"""Check if a path contains another path."""
if len(parent_path) > len(child_path):
return False
return all(parent_path[i] == child_path[i] for i in range(len(parent_path)))
def _path_to_udf_duckdb_path(path: PathTuple,
path_to_udf_col_name: dict[PathTuple, str]) -> Optional[PathTuple]:
first_subpath, *rest_of_path = path
for parent_path, udf_col_name in path_to_udf_col_name.items():
# If the user selected udf(document.*.text) as "udf" and wanted to sort by "udf.len", we need to
# sort by "udf.*.len" where the "*" came from the fact that the udf was applied to a list of
# "text" fields.
wildcards = [x for x in parent_path if x == PATH_WILDCARD]
if _path_contains(parent_path, path):
return (udf_col_name, *wildcards, *path[len(parent_path):])
elif first_subpath == udf_col_name:
return (udf_col_name, *wildcards, *rest_of_path)
return None
def _col_destination_path(column: Column, is_computed_signal: Optional[bool] = False) -> PathTuple:
"""Get the destination path where the output of this selection column will be stored."""
source_path = column.path
if not column.signal_udf:
return source_path
signal_key = column.signal_udf.key(is_computed_signal=is_computed_signal)
# If we are enriching a value we should store the signal data in the value's parent.
if source_path[-1] == VALUE_KEY:
dest_path = (*source_path[:-1], signal_key)
else:
dest_path = (*source_path, signal_key)
return dest_path
def _root_column(manifest: SignalManifest) -> str:
"""Returns the root column of a signal manifest."""
field_keys = list(manifest.data_schema.fields.keys())
if len(field_keys) > 2:
raise ValueError('Expected at most two fields in signal manifest, '
f'the rowid and root this signal is enriching. Got {field_keys}.')
return next(filter(lambda field: field != ROWID, manifest.data_schema.fields.keys()))
def _derived_from_path(path: PathTuple, schema: Schema) -> PathTuple:
# Find the closest parent of `path` that is a signal root.
for i in reversed(range(len(path))):
sub_path = path[:i]
if schema.get_field(sub_path).signal is not None:
# Skip the signal name at the end to get the source path that was enriched.
return sub_path[:-1]
raise ValueError('Cannot find the source path for the enriched path: {path}')
def _make_schema_from_path(path: PathTuple, field: Field) -> Schema:
"""Returns a schema that contains only the given path."""
for sub_path in reversed(path):
if sub_path == PATH_WILDCARD:
field = Field(repeated_field=field)
else:
field = Field(fields={sub_path: field})
if not field.fields:
raise ValueError(f'Invalid path: {path}. Must contain at least one field name.')
return Schema(fields=field.fields)
def _replace_nan_with_none(df: pd.DataFrame) -> pd.DataFrame:
"""DuckDB returns np.nan for missing field in string column, replace with None for correctness."""
# TODO(https://github.com/duckdb/duckdb/issues/4066): Remove this once duckdb fixes upstream.
for col in df.columns:
if is_object_dtype(df[col]):
df[col].replace(np.nan, None, inplace=True)
return df
def _offset_any_span(offset: int, item: Item, schema: Field) -> None:
"""Offsets any spans inplace by the given parent offset."""
if schema.dtype == DataType.STRING_SPAN:
item = cast(dict, item)
item[VALUE_KEY][TEXT_SPAN_START_FEATURE] += offset
item[VALUE_KEY][TEXT_SPAN_END_FEATURE] += offset
if schema.fields:
item = cast(dict, item)
for key, sub_schema in schema.fields.items():
_offset_any_span(offset, item[key], sub_schema)
if schema.repeated_field:
item = cast(list, item)
for sub_item in item:
_offset_any_span(offset, sub_item, schema.repeated_field)
def _schema_has_spans(field: Field) -> bool:
if field.dtype and field.dtype == DataType.STRING_SPAN:
return True
if field.fields:
children_have_spans = any(_schema_has_spans(sub_field) for sub_field in field.fields.values())
if children_have_spans:
return True
if field.repeated_field:
return _schema_has_spans(field.repeated_field)
return False
def _normalize_bins(bins: Optional[Union[Sequence[Bin], Sequence[float]]]) -> Optional[list[Bin]]:
if bins is None:
return None
if not isinstance(bins[0], (float, int)):
return cast(list[Bin], bins)
named_bins: list[Bin] = []
for i in range(len(bins) + 1):
start = cast(float, bins[i - 1]) if i > 0 else None
end = cast(float, bins[i]) if i < len(bins) else None
named_bins.append((str(i), start, end))
return named_bins
def _auto_bins(stats: StatsResult, num_bins: int) -> list[Bin]:
min_val = cast(float, stats.min_val)
max_val = cast(float, stats.max_val)
bin_width = (max_val - min_val) / num_bins
bins: list[Bin] = []
for i in range(num_bins):
start = None if i == 0 else min_val + i * bin_width
end = None if i == num_bins - 1 else min_val + (i + 1) * bin_width
bins.append((str(i), start, end))
return bins
def get_config_filepath(namespace: str, dataset_name: str) -> str:
"""Gets the config yaml filepath."""
return os.path.join(get_dataset_output_dir(data_path(), namespace, dataset_name), CONFIG_FILENAME)