Update inference_manager.py
Browse files- inference_manager.py +2 -2
inference_manager.py
CHANGED
@@ -196,7 +196,7 @@ class InferenceManager:
|
|
196 |
pipe = StableDiffusionPipeline.from_pretrained(ckpt_dir, vae=vae, torch_dtype=torch.bfloat16, use_safetensors=True)
|
197 |
else:
|
198 |
use_vae = cfg.get("vae", "")
|
199 |
-
if not use_vae
|
200 |
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.bfloat16)
|
201 |
elif use_vae == "tae":
|
202 |
vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.bfloat16)
|
@@ -510,7 +510,7 @@ class ModelManager:
|
|
510 |
print("extracting face...")
|
511 |
faceid_all_embeds = []
|
512 |
for image in images:
|
513 |
-
face =
|
514 |
faces = self.app.get(face)
|
515 |
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
516 |
faceid_all_embeds.append(faceid_embed)
|
|
|
196 |
pipe = StableDiffusionPipeline.from_pretrained(ckpt_dir, vae=vae, torch_dtype=torch.bfloat16, use_safetensors=True)
|
197 |
else:
|
198 |
use_vae = cfg.get("vae", "")
|
199 |
+
if not use_vae:
|
200 |
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.bfloat16)
|
201 |
elif use_vae == "tae":
|
202 |
vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.bfloat16)
|
|
|
510 |
print("extracting face...")
|
511 |
faceid_all_embeds = []
|
512 |
for image in images:
|
513 |
+
face = cv2.imread(image) ##here accepts image path
|
514 |
faces = self.app.get(face)
|
515 |
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
516 |
faceid_all_embeds.append(faceid_embed)
|