Update inference_manager.py
Browse files- inference_manager.py +3 -4
inference_manager.py
CHANGED
@@ -514,7 +514,6 @@ class ModelManager:
|
|
514 |
faceid_all_embeds.append(faceid_embed)
|
515 |
|
516 |
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
|
517 |
-
average_embedding = average_embedding.to("cuda")
|
518 |
|
519 |
print("start inference...")
|
520 |
style_selection = ""
|
@@ -523,9 +522,9 @@ class ModelManager:
|
|
523 |
seed = seed or int(randomize_seed_fn(seed, randomize_seed))
|
524 |
p = remove_child_related_content(p)
|
525 |
prompt_str = cfg.get("prompt", "{prompt}").replace("{prompt}", p)
|
526 |
-
generator = torch.Generator(model.base_model_pipeline.device).manual_seed(seed)
|
527 |
print(f"generate: p={p}, np={negative_prompt}, steps={steps}, guidance_scale={guidance_scale}, size={width},{height}, seed={seed}")
|
528 |
-
print(f"device: embedding={average_embedding.device}, generator={generator.device}, ip_model={ip_model.device}, pipe={model.base_model_pipeline.device}")
|
529 |
images = ip_model.generate(
|
530 |
prompt=prompt_str,
|
531 |
negative_prompt=negative_prompt,
|
@@ -535,7 +534,7 @@ class ModelManager:
|
|
535 |
height=height,
|
536 |
guidance_scale=face_strength,
|
537 |
num_inference_steps=steps,
|
538 |
-
generator=generator,
|
539 |
num_images_per_prompt=1,
|
540 |
#output_type="pil",
|
541 |
#callback_on_step_end=callback_dynamic_cfg,
|
|
|
514 |
faceid_all_embeds.append(faceid_embed)
|
515 |
|
516 |
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
|
|
|
517 |
|
518 |
print("start inference...")
|
519 |
style_selection = ""
|
|
|
522 |
seed = seed or int(randomize_seed_fn(seed, randomize_seed))
|
523 |
p = remove_child_related_content(p)
|
524 |
prompt_str = cfg.get("prompt", "{prompt}").replace("{prompt}", p)
|
525 |
+
#generator = torch.Generator(model.base_model_pipeline.device).manual_seed(seed)
|
526 |
print(f"generate: p={p}, np={negative_prompt}, steps={steps}, guidance_scale={guidance_scale}, size={width},{height}, seed={seed}")
|
527 |
+
#print(f"device: embedding={average_embedding.device}, generator={generator.device}, ip_model={ip_model.device}, pipe={model.base_model_pipeline.device}")
|
528 |
images = ip_model.generate(
|
529 |
prompt=prompt_str,
|
530 |
negative_prompt=negative_prompt,
|
|
|
534 |
height=height,
|
535 |
guidance_scale=face_strength,
|
536 |
num_inference_steps=steps,
|
537 |
+
#generator=generator,
|
538 |
num_images_per_prompt=1,
|
539 |
#output_type="pil",
|
540 |
#callback_on_step_end=callback_dynamic_cfg,
|