|
import os |
|
from typing import List |
|
|
|
import torch |
|
from diffusers import StableDiffusionPipeline |
|
from diffusers.pipelines.controlnet import MultiControlNetModel |
|
from PIL import Image |
|
from safetensors import safe_open |
|
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection |
|
|
|
from attention_processor_faceid import LoRAAttnProcessor, LoRAIPAttnProcessor |
|
from utils import is_torch2_available |
|
|
|
USE_DAFAULT_ATTN = False |
|
if is_torch2_available() and (not USE_DAFAULT_ATTN): |
|
from attention_processor_faceid import ( |
|
LoRAAttnProcessor2_0 as LoRAAttnProcessor, |
|
) |
|
from attention_processor_faceid import ( |
|
LoRAIPAttnProcessor2_0 as LoRAIPAttnProcessor, |
|
) |
|
else: |
|
from attention_processor_faceid import LoRAAttnProcessor, LoRAIPAttnProcessor |
|
from resampler import PerceiverAttention, FeedForward |
|
|
|
|
|
class FacePerceiverResampler(torch.nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
dim=768, |
|
depth=4, |
|
dim_head=64, |
|
heads=16, |
|
embedding_dim=1280, |
|
output_dim=768, |
|
ff_mult=4, |
|
): |
|
super().__init__() |
|
|
|
self.proj_in = torch.nn.Linear(embedding_dim, dim) |
|
self.proj_out = torch.nn.Linear(dim, output_dim) |
|
self.norm_out = torch.nn.LayerNorm(output_dim) |
|
self.layers = torch.nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append( |
|
torch.nn.ModuleList( |
|
[ |
|
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), |
|
FeedForward(dim=dim, mult=ff_mult), |
|
] |
|
) |
|
) |
|
|
|
def forward(self, latents, x): |
|
x = self.proj_in(x) |
|
for attn, ff in self.layers: |
|
latents = attn(x, latents) + latents |
|
latents = ff(latents) + latents |
|
latents = self.proj_out(latents) |
|
return self.norm_out(latents) |
|
|
|
|
|
class MLPProjModel(torch.nn.Module): |
|
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4): |
|
super().__init__() |
|
|
|
self.cross_attention_dim = cross_attention_dim |
|
self.num_tokens = num_tokens |
|
|
|
self.proj = torch.nn.Sequential( |
|
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2), |
|
torch.nn.GELU(), |
|
torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens), |
|
) |
|
self.norm = torch.nn.LayerNorm(cross_attention_dim) |
|
|
|
def forward(self, id_embeds): |
|
x = self.proj(id_embeds) |
|
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class ProjPlusModel(torch.nn.Module): |
|
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, clip_embeddings_dim=1280, num_tokens=4): |
|
super().__init__() |
|
|
|
self.cross_attention_dim = cross_attention_dim |
|
self.num_tokens = num_tokens |
|
|
|
self.proj = torch.nn.Sequential( |
|
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2), |
|
torch.nn.GELU(), |
|
torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens), |
|
) |
|
self.norm = torch.nn.LayerNorm(cross_attention_dim) |
|
|
|
self.perceiver_resampler = FacePerceiverResampler( |
|
dim=cross_attention_dim, |
|
depth=4, |
|
dim_head=64, |
|
heads=cross_attention_dim // 64, |
|
embedding_dim=clip_embeddings_dim, |
|
output_dim=cross_attention_dim, |
|
ff_mult=4, |
|
) |
|
|
|
def forward(self, id_embeds, clip_embeds, shortcut=False, scale=1.0): |
|
|
|
x = self.proj(id_embeds) |
|
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) |
|
x = self.norm(x) |
|
out = self.perceiver_resampler(x, clip_embeds) |
|
if shortcut: |
|
out = x + scale * out |
|
return out |
|
|
|
|
|
class IPAdapterFaceID: |
|
def __init__(self, sd_pipe, ip_ckpt, device, lora_rank=128, num_tokens=4, torch_dtype=torch.float16): |
|
self.device = device |
|
self.ip_ckpt = ip_ckpt |
|
self.lora_rank = lora_rank |
|
self.num_tokens = num_tokens |
|
self.torch_dtype = torch_dtype |
|
|
|
self.pipe = sd_pipe.to(self.device) |
|
self.set_ip_adapter() |
|
|
|
|
|
self.image_proj_model = self.init_proj() |
|
|
|
self.load_ip_adapter() |
|
|
|
def init_proj(self): |
|
image_proj_model = MLPProjModel( |
|
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, |
|
id_embeddings_dim=512, |
|
num_tokens=self.num_tokens, |
|
).to(self.device, dtype=self.torch_dtype) |
|
return image_proj_model |
|
|
|
def set_ip_adapter(self): |
|
unet = self.pipe.unet |
|
attn_procs = {} |
|
for name in unet.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
if cross_attention_dim is None: |
|
attn_procs[name] = LoRAAttnProcessor( |
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank, |
|
).to(self.device, dtype=self.torch_dtype) |
|
else: |
|
attn_procs[name] = LoRAIPAttnProcessor( |
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens, |
|
).to(self.device, dtype=self.torch_dtype) |
|
unet.set_attn_processor(attn_procs) |
|
|
|
def load_ip_adapter(self): |
|
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": |
|
state_dict = {"image_proj": {}, "ip_adapter": {}} |
|
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
if key.startswith("image_proj."): |
|
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) |
|
elif key.startswith("ip_adapter."): |
|
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) |
|
else: |
|
state_dict = torch.load(self.ip_ckpt, map_location="cpu") |
|
self.image_proj_model.load_state_dict(state_dict["image_proj"]) |
|
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) |
|
ip_layers.load_state_dict(state_dict["ip_adapter"]) |
|
|
|
@torch.inference_mode() |
|
def get_image_embeds(self, faceid_embeds): |
|
|
|
faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype) |
|
print(faceid_embeds.device) |
|
print(next(self.image_proj_model.parameters()).device) |
|
|
|
image_prompt_embeds = self.image_proj_model(faceid_embeds) |
|
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds)) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
def set_scale(self, scale): |
|
for attn_processor in self.pipe.unet.attn_processors.values(): |
|
if isinstance(attn_processor, LoRAIPAttnProcessor): |
|
attn_processor.scale = scale |
|
|
|
def generate( |
|
self, |
|
faceid_embeds=None, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
guidance_scale=7.5, |
|
num_inference_steps=30, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
|
|
num_prompts = faceid_embeds.size(0) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds) |
|
|
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
with torch.inference_mode(): |
|
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( |
|
prompt, |
|
device=self.device, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) |
|
|
|
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None |
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
|
|
return images |
|
|
|
|
|
class IPAdapterFaceIDPlus: |
|
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, lora_rank=128, num_tokens=4, torch_dtype=torch.float16): |
|
self.device = device |
|
self.image_encoder_path = image_encoder_path |
|
self.ip_ckpt = ip_ckpt |
|
self.lora_rank = lora_rank |
|
self.num_tokens = num_tokens |
|
self.torch_dtype = torch_dtype |
|
|
|
self.pipe = sd_pipe.to(self.device) |
|
self.set_ip_adapter() |
|
|
|
|
|
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to( |
|
self.device, dtype=self.torch_dtype |
|
) |
|
self.clip_image_processor = CLIPImageProcessor() |
|
|
|
self.image_proj_model = self.init_proj() |
|
|
|
self.load_ip_adapter() |
|
|
|
def init_proj(self): |
|
image_proj_model = ProjPlusModel( |
|
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, |
|
id_embeddings_dim=512, |
|
clip_embeddings_dim=self.image_encoder.config.hidden_size, |
|
num_tokens=self.num_tokens, |
|
).to(self.device, dtype=self.torch_dtype) |
|
return image_proj_model |
|
|
|
def set_ip_adapter(self): |
|
unet = self.pipe.unet |
|
attn_procs = {} |
|
for name in unet.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
if cross_attention_dim is None: |
|
attn_procs[name] = LoRAAttnProcessor( |
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank, |
|
).to(self.device, dtype=self.torch_dtype) |
|
else: |
|
attn_procs[name] = LoRAIPAttnProcessor( |
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens, |
|
).to(self.device, dtype=self.torch_dtype) |
|
unet.set_attn_processor(attn_procs) |
|
|
|
def load_ip_adapter(self): |
|
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": |
|
state_dict = {"image_proj": {}, "ip_adapter": {}} |
|
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
if key.startswith("image_proj."): |
|
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) |
|
elif key.startswith("ip_adapter."): |
|
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) |
|
else: |
|
state_dict = torch.load(self.ip_ckpt, map_location="cpu") |
|
self.image_proj_model.load_state_dict(state_dict["image_proj"]) |
|
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) |
|
ip_layers.load_state_dict(state_dict["ip_adapter"]) |
|
|
|
@torch.inference_mode() |
|
def get_image_embeds(self, faceid_embeds, face_image, s_scale, shortcut): |
|
if isinstance(face_image, Image.Image): |
|
pil_image = [face_image] |
|
clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values |
|
clip_image = clip_image.to(self.device, dtype=self.torch_dtype) |
|
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] |
|
uncond_clip_image_embeds = self.image_encoder( |
|
torch.zeros_like(clip_image), output_hidden_states=True |
|
).hidden_states[-2] |
|
|
|
faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype) |
|
image_prompt_embeds = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale) |
|
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
def set_scale(self, scale): |
|
for attn_processor in self.pipe.unet.attn_processors.values(): |
|
if isinstance(attn_processor, LoRAIPAttnProcessor): |
|
attn_processor.scale = scale |
|
|
|
def generate( |
|
self, |
|
face_image=None, |
|
faceid_embeds=None, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
guidance_scale=7.5, |
|
num_inference_steps=30, |
|
s_scale=1.0, |
|
shortcut=False, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
|
|
num_prompts = faceid_embeds.size(0) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut) |
|
|
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
with torch.inference_mode(): |
|
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( |
|
prompt, |
|
device=self.device, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) |
|
|
|
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None |
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
|
|
return images |
|
|
|
|
|
class IPAdapterFaceIDXL(IPAdapterFaceID): |
|
"""SDXL""" |
|
|
|
def generate( |
|
self, |
|
faceid_embeds=None, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
num_inference_steps=30, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
num_prompts = faceid_embeds.size(0) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds) |
|
|
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.pipe.encode_prompt( |
|
prompt, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) |
|
|
|
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None |
|
print(generator.device, self.pipe.device, prompt_embeds.device, negative_prompt_embeds.device, pooled_prompt_embeds.device, negative_pooled_prompt_embeds.device) |
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
|
|
return images |