|
import spaces |
|
import gradio as gr |
|
import os |
|
import random |
|
import json |
|
import time |
|
import uuid |
|
from PIL import Image |
|
from huggingface_hub import snapshot_download |
|
from diffusers import AutoencoderKL |
|
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler, AutoPipelineForText2Image, DiffusionPipeline |
|
from diffusers import EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, DPMSolverSDEScheduler |
|
from diffusers.models.attention_processor import AttnProcessor2_0 |
|
import torch |
|
from typing import Tuple |
|
from datetime import datetime |
|
import requests |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
import importlib |
|
import re |
|
from urllib.parse import urlparse |
|
|
|
random.seed(time.time()) |
|
MAX_SEED = 12211231 |
|
CACHE_EXAMPLES = "1" |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4192")) |
|
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" |
|
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" |
|
|
|
NUM_IMAGES_PER_PROMPT = 1 |
|
|
|
child_related_regex = re.compile( |
|
r'(child|children|kid|kids|baby|babies|toddler|infant|juvenile|minor|underage|preteen|adolescent|youngster|youth|son|daughter|young|kindergarten|preschool|' |
|
r'([1-9]|1[0-7])[\s_\-|\.\,]*year(s)?[\s_\-|\.\,]*old|' |
|
r'little|small|tiny|short|young|new[\s_\-|\.\,]*born[\s_\-|\.\,]*(boy|girl|male|man|bro|brother|sis|sister))', |
|
re.IGNORECASE |
|
) |
|
|
|
|
|
def remove_child_related_content(prompt): |
|
cleaned_prompt = re.sub(child_related_regex, '', prompt) |
|
return cleaned_prompt.strip() |
|
|
|
|
|
def contains_child_related_content(prompt): |
|
if child_related_regex.search(prompt): |
|
return True |
|
return False |
|
|
|
cfg = json.load(open("app.conf")) |
|
|
|
def load_pipeline_and_scheduler(): |
|
clip_skip = cfg.get("clip_skip", 0) |
|
|
|
|
|
ckpt_dir = snapshot_download(repo_id=cfg["model_id"]) |
|
|
|
|
|
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.float16) |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
ckpt_dir, |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
use_safetensors=True, |
|
variant="fp16" |
|
) |
|
pipe = pipe.to("cuda") |
|
|
|
pipe.unet.set_attn_processor(AttnProcessor2_0()) |
|
|
|
|
|
samplers = { |
|
"Euler a": EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config), |
|
"DPM++ SDE Karras": DPMSolverSDEScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True) |
|
} |
|
|
|
pipe.scheduler = samplers[cfg.get("sampler","DPM++ SDE Karras")] |
|
|
|
|
|
pipe.text_encoder.config.num_hidden_layers -= (clip_skip - 1) |
|
|
|
if USE_TORCH_COMPILE: |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
print("Model Compiled!") |
|
return pipe |
|
pipe = load_pipeline_and_scheduler() |
|
css = ''' |
|
.gradio-container{max-width: 560px !important} |
|
body { |
|
background-color: rgb(3, 7, 18); |
|
color: white; |
|
} |
|
.gradio-container { |
|
background-color: rgb(3, 7, 18) !important; |
|
border: none !important; |
|
} |
|
.gradio-container footer { |
|
display: block !important; |
|
} |
|
''' |
|
js = ''' |
|
<script src="https://huggingface.co/spaces/nsfwalex/sd_card/resolve/main/'''+cfg.get("prompt_generator", "psv1.js")+'''"></script> |
|
<script> |
|
function getEnvInfo() { |
|
const result = {}; |
|
// Get URL parameters |
|
const urlParams = new URLSearchParams(window.location.search); |
|
for (const [key, value] of urlParams) { |
|
result[key] = value; |
|
} |
|
|
|
// Get current domain and convert to lowercase |
|
result["__domain"] = window.location.hostname.toLowerCase(); |
|
|
|
// Get iframe parent domain, if any, and convert to lowercase |
|
try { |
|
if (window.self !== window.top) { |
|
result["__iframe_domain"] = document.referrer |
|
? new URL(document.referrer).hostname.toLowerCase() |
|
: "unable to get iframe parent domain"; |
|
}else{ |
|
result["__iframe_domain"] = ""; |
|
} |
|
} catch (e) { |
|
result["__iframe_domain"] = "unable to access iframe parent domain"; |
|
} |
|
|
|
return result; |
|
} |
|
function isValidEnv(){ |
|
envInfo = getEnvInfo(); |
|
return envInfo["e"] == "1" || |
|
envInfo["__domain"].indexOf("nsfwais.io") != -1 || |
|
envInfo["__iframe_domain"].indexOf("nsfwais.io") != -1 || |
|
envInfo["__domain"].indexOf("127.0.0.1") != -1 || |
|
envInfo["__iframe_domain"].indexOf("127.0.0.1") != -1; |
|
} |
|
window.g=function(p){ |
|
params = getEnvInfo(); |
|
if (!isValidEnv()){ |
|
return ""; |
|
} |
|
const conditions = { |
|
"tag": ["normal", "sexy"], |
|
"exclude_category": ["Clothing"], |
|
"count_per_tag": 1 |
|
}; |
|
prompt = generateSexyPrompt() |
|
console.log(prompt); |
|
return prompt |
|
} |
|
|
|
window.postMessageToParent = function(prompt, event, source, value) { |
|
// Construct the message object with the provided parameters |
|
console.log("post start",event, source, value); |
|
const message = { |
|
event: event, |
|
source: source, |
|
value: value |
|
}; |
|
if (!prompt){ |
|
prompt = window.g(); |
|
|
|
// Find the prompt input element |
|
const promptContainer = document.getElementById('prompt_input_box'); |
|
if (promptContainer) { |
|
const promptInput = promptContainer.querySelector('input') || promptContainer.querySelector('textarea'); |
|
if (promptInput) { |
|
promptInput.value = prompt; |
|
// Trigger an input event to ensure Gradio recognizes the change |
|
promptInput.dispatchEvent(new Event('input', { bubbles: true })); |
|
} |
|
} |
|
} |
|
if (window.self !== window.top) { |
|
// Post the message to the parent window |
|
window.parent.postMessage(message, '*'); |
|
}else if(isValidEnv()){ |
|
try{ |
|
sendCustomEventToDataLayer({},event,source,value) |
|
} catch (error) { |
|
console.error("Error in sendCustomEventToDataLayer:", error); |
|
} |
|
}else{ |
|
console.log("Not in an iframe, can't post to parent"); |
|
} |
|
console.log("post finish"); |
|
return prompt; |
|
} |
|
function uploadImage(prompt, images, event, source, value) { |
|
// Ensure we're in an iframe |
|
console.log("uploadImage", prompt, images && images.length > 0 ? images[0].image.url : null, event, source, value); |
|
// Get the first image from the gallery (assuming it's an array) |
|
let imageUrl = images && images.length > 0 ? images[0].image.url : null; |
|
|
|
if (window.self !== window.top) { |
|
// Post the message to the parent window |
|
// Prepare the data to send |
|
let data = { |
|
event: event, |
|
source: source, |
|
value:{ |
|
prompt: prompt, |
|
image: imageUrl |
|
} |
|
}; |
|
window.parent.postMessage(JSON.stringify(data), '*'); |
|
} else if (isValidEnv()){ |
|
try{ |
|
sendCustomEventToDataLayer({},event,source,{"prompt": prompt, "image":imageUrl, "model": value}) |
|
} catch (error) { |
|
console.error("Error in sendCustomEventToDataLayer:", error); |
|
} |
|
}else{ |
|
console.log("Not in an iframe, can't post to parent"); |
|
} |
|
return prompt, images |
|
} |
|
function onDemoLoad(){ |
|
let envInfo = getEnvInfo(); |
|
console.log(envInfo); |
|
if (isValidEnv()){ |
|
var element = document.getElementById("desc_html_code"); |
|
if (element) { |
|
element.parentNode.removeChild(element); |
|
} |
|
} |
|
return; |
|
//return envInfo["__domain"], envInfo["__iframe_domain"] |
|
} |
|
</script> |
|
''' |
|
desc_html=''' |
|
<div style="background-color: #f0f0f0; padding: 10px; border-radius: 5px; text-align: center; margin-top: 20px;"> |
|
<p style="font-size: 16px; color: #333;"> |
|
For the full version and more exciting NSFW AI apps, visit |
|
<a href="https://nsfwais.io?utm_source=hf_'''+cfg["model_id"].replace("/","_")+'''&utm_medium=referral" style="color: #0066cc; text-decoration: none; font-weight: bold;" rel="dofollow">nsfwais.io</a>! |
|
</p> |
|
</div> |
|
''' |
|
def save_image(img): |
|
|
|
unique_name = str(uuid.uuid4()) + ".webp" |
|
|
|
|
|
webp_img = img.convert("RGB") |
|
|
|
|
|
webp_img.save(unique_name, "WEBP", quality=90) |
|
|
|
|
|
with Image.open(unique_name) as webp_file: |
|
webp_image = webp_file.copy() |
|
|
|
return webp_image, unique_name |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
@spaces.GPU(duration=60) |
|
def generate(p, progress=gr.Progress(track_tqdm=True)): |
|
negative_prompt = cfg.get("negative_prompt", "") |
|
style_selection = "" |
|
use_negative_prompt = True |
|
seed = 0 |
|
width = cfg.get("width", 1024) |
|
height = cfg.get("width", 768) |
|
inference_steps = cfg.get("inference_steps", 30) |
|
randomize_seed = True |
|
guidance_scale = cfg.get("guidance_scale", 7.5) |
|
p = remove_child_related_content(p) |
|
prompt_str = cfg.get("prompt", "{prompt}").replace("{prompt}", p) |
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
generator = torch.Generator(pipe.device).manual_seed(seed) |
|
images = pipe( |
|
prompt=prompt_str, |
|
negative_prompt=negative_prompt, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=inference_steps, |
|
generator=generator, |
|
num_images_per_prompt=NUM_IMAGES_PER_PROMPT, |
|
output_type="pil", |
|
).images |
|
images = [save_image(img) for img in images] |
|
image_paths = [i[1] for i in images] |
|
print(prompt_str, image_paths) |
|
return [i[0] for i in images] |
|
default_image = cfg.get("cover_path", None) |
|
|
|
if default_image: |
|
if isinstance(default_image, list): |
|
|
|
existing_images = [img for img in default_image if os.path.exists(img)] |
|
|
|
if existing_images: |
|
default_image = existing_images[int(time.time()*1000)%len(existing_images)] |
|
else: |
|
default_image = None |
|
elif not os.path.exists(default_image): |
|
print(f"cover file not existed, {default_image}") |
|
default_image = None |
|
else: |
|
default_image = None |
|
with gr.Blocks(css=css,head=js,fill_height=True) as demo: |
|
with gr.Row(equal_height=False): |
|
with gr.Group(): |
|
gr.HTML(value=desc_html, elem_id='desc_html_code') |
|
result = gr.Gallery(value=[default_image], |
|
label="Result", show_label=False, columns=1, rows=1, show_share_button=True,elem_id=cfg["model_id"].replace("/", "-"), |
|
show_download_button=True,allow_preview=False,interactive=False, min_width=cfg.get("window_min_width", 340),height=360 |
|
) |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
show_label=False, |
|
max_lines=2, |
|
lines=2, |
|
placeholder="Enter your fantasy or click ->", |
|
container=False, |
|
scale=5, |
|
min_width=100, |
|
elem_id="prompt_input_box" |
|
) |
|
random_button = gr.Button("Surprise Me", scale=1, min_width=10) |
|
run_button = gr.Button( "GO!", scale=1, min_width=20, variant="primary",icon="https://huggingface.co/spaces/nsfwalex/sd_card/resolve/main/hot.svg") |
|
|
|
def on_demo_load(request: gr.Request): |
|
current_domain = request.request.headers.get("Host", "") |
|
|
|
|
|
referer = request.request.headers.get("Referer", "") |
|
iframe_parent_domain = "" |
|
|
|
if referer: |
|
try: |
|
parsed_referer = urlparse(referer) |
|
iframe_parent_domain = parsed_referer.netloc |
|
except: |
|
iframe_parent_domain = "Unable to parse referer" |
|
|
|
params = dict(request.query_params) |
|
|
|
print(f"load_demo, urlparams={params},cover={default_image},domain={current_domain},iframe={iframe_parent_domain}") |
|
session_data = { |
|
"params": params, |
|
"client_ip": request.client.host, |
|
"refer": referer, |
|
"host": current_domain |
|
} |
|
if params.get("e", "0") == "1" or "nsfwais.io" in current_domain or "nsfwais.io" in iframe_parent_domain or "127.0.0.1" in current_domain or "127.0.0.1" in iframe_parent_domain: |
|
|
|
|
|
|
|
return session_data |
|
|
|
return session_data |
|
|
|
|
|
session_state = gr.State() |
|
result.change(fn=lambda x,y:None , inputs=[prompt,result], outputs=[], js=f'''(p,img)=>window.uploadImage(p, img,"process_finished","demo_hf_{cfg.get("name")}_card", "{cfg["model_id"]}")''') |
|
run_button.click(generate, inputs=[prompt], outputs=[result],trigger_mode="once",js=f'''(p)=>window.postMessageToParent(p,"process_started","demo_hf_{cfg.get("name")}_card", "click_go")''') |
|
random_button.click(fn=lambda x:x, inputs=[prompt], outputs=[prompt], js='''(p)=>window.g(p)''') |
|
demo.load(fn=on_demo_load, inputs=[], outputs=[session_state], js='''()=>onDemoLoad()''') |
|
if __name__ == "__main__": |
|
demo.queue(max_size=100).launch(show_api=True,show_error=False) |