sd_card / app.py
nsfwalex's picture
Update app.py
7bd45d4 verified
raw
history blame
9.64 kB
import spaces
import gradio as gr
import os
import random
import json
import time
import uuid
from PIL import Image
from huggingface_hub import snapshot_download
from diffusers import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler, AutoPipelineForText2Image, DiffusionPipeline
from diffusers import EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, DPMSolverSDEScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
import torch
from typing import Tuple
from datetime import datetime
import requests
import torch
from diffusers import DiffusionPipeline
import importlib
from urllib.parse import urlparse
random.seed(time.time())
MAX_SEED = 12211231
CACHE_EXAMPLES = "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4192"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
NUM_IMAGES_PER_PROMPT = 1
cfg = json.load(open("app.conf"))
def load_pipeline_and_scheduler():
clip_skip = cfg.get("clip_skip", 0)
# Download the model files
ckpt_dir = snapshot_download(repo_id=cfg["model_id"])
# Load the models
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
ckpt_dir,
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16"
)
pipe = pipe.to("cuda")
pipe.unet.set_attn_processor(AttnProcessor2_0())
# Define samplers
samplers = {
"Euler a": EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config),
"DPM++ SDE Karras": DPMSolverSDEScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
}
# Set the scheduler based on the selected sampler
pipe.scheduler = samplers[cfg.get("sampler","DPM++ SDE Karras")]
# Set clip skip
pipe.text_encoder.config.num_hidden_layers -= (clip_skip - 1)
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
print("Model Compiled!")
return pipe
pipe = load_pipeline_and_scheduler()
css = '''
.gradio-container{max-width: 560px !important}
body {
background-color: rgb(3, 7, 18);
color: white;
}
.gradio-container {
background-color: rgb(3, 7, 18) !important;
border: none !important;
}
footer {display: none !important;}
'''
js = '''
<script src="https://huggingface.co/spaces/nsfwalex/sd_card/resolve/main/prompt.js"></script>
<script>
function getEnvInfo() {
const result = {};
// Get URL parameters
const urlParams = new URLSearchParams(window.location.search);
for (const [key, value] of urlParams) {
result[key] = value;
}
// Get current domain and convert to lowercase
result["__domain"] = window.location.hostname.toLowerCase();
// Get iframe parent domain, if any, and convert to lowercase
try {
if (window.self !== window.top) {
result["__iframe_domain"] = document.referrer
? new URL(document.referrer).hostname.toLowerCase()
: "unable to get iframe parent domain";
}else{
result["__iframe_domain"] = "";
}
} catch (e) {
result["__iframe_domain"] = "unable to access iframe parent domain";
}
return result;
}
window.g=function(p){
params = getEnvInfo();
if (params["e"] != "1"){
return "";
}
const conditions = {
"tag": ["normal", "sexy", "porn"],
"exclude_category": ["Clothing"],
"count_per_tag": 1
};
prompt = generateSexyPrompt()
console.log(prompt);
return prompt
}
window.postMessageToParent = function(prompt, event, source, value) {
// Construct the message object with the provided parameters
console.log("post start",event, source, value);
const message = {
event: event,
source: source,
value: value
};
// Post the message to the parent window
window.parent.postMessage(message, '*');
console.log("post finish");
return prompt;
}
function uploadImage(prompt, images, event, source, value) {
// Ensure we're in an iframe
console.log("uploadImage", prompt, images && images.length > 0 ? images[0].image.url : null, event, source, value);
if (window.self !== window.top) {
// Get the first image from the gallery (assuming it's an array)
let imageUrl = images && images.length > 0 ? images[0].image.url : null;
// Prepare the data to send
let data = {
event: event,
source: source,
prompt: prompt,
image: imageUrl
};
// Post the message to the parent window
window.parent.postMessage(JSON.stringify(data), '*');
} else {
console.log("Not in an iframe, can't post to parent");
}
return ""
}
function onDemoLoad(){
let envInfo = getEnvInfo();
console.log(envInfo);
return;
//return envInfo["__domain"], envInfo["__iframe_domain"]
}
</script>
'''
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(duration=60)
def generate(prompt, progress=gr.Progress(track_tqdm=True)):
negative_prompt = cfg.get("negative_prompt", "")
style_selection = ""
use_negative_prompt = True
seed = 0
width = cfg.get("width", 1024)
height = cfg.get("width", 768)
inference_steps = cfg.get("inference_steps", 30)
randomize_seed = True
guidance_scale = cfg.get("guidance_scale", 7.5)
prompt_str = cfg.get("prompt", "{prompt}").replace("{prompt}", prompt)
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(pipe.device).manual_seed(seed)
images = pipe(
prompt=prompt_str,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=inference_steps,
generator=generator,
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
output_type="pil",
).images
image_paths = [save_image(img) for img in images]
print(prompt_str, image_paths)
return image_paths
with gr.Blocks(css=css,head=js,fill_height=True) as demo:
with gr.Row(equal_height=False):
with gr.Group():
result = gr.Gallery(
label="Result", show_label=False, columns=1, rows=1, show_share_button=True,
show_download_button=True,allow_preview=True,interactive=False, min_width=cfg.get("window_min_width", 340),height=360
)
with gr.Row():
prompt = gr.Text(
show_label=False,
max_lines=2,
lines=2,
placeholder="Enter what you want to see",
container=False,
scale=5,
min_width=100,
)
random_button = gr.Button("Surprise Me", scale=1, min_width=10)
run_button = gr.Button( "GO!", scale=1, min_width=20, variant="primary",icon="https://huggingface.co/spaces/nsfwalex/sd_card/resolve/main/hot.svg")
def on_demo_load(request: gr.Request):
current_domain = request.request.headers.get("Host", "")
# Get the potential iframe parent domain from the Referer header
referer = request.request.headers.get("Referer", "")
iframe_parent_domain = ""
if referer:
try:
parsed_referer = urlparse(referer)
iframe_parent_domain = parsed_referer.netloc
except:
iframe_parent_domain = "Unable to parse referer"
params = dict(request.query_params)
default_image = cfg.get("cover_path", None)
if default_image:
if isinstance(default_image, list):
# Filter out non-existent paths
existing_images = [img for img in default_image if os.path.exists(img)]
print(f"found cover files: {existing_images}")
if existing_images:
default_image = random.choice(existing_images)
else:
default_image = None
elif not os.path.exists(default_image):
print(f"cover file not existed, {default_image}")
default_image = None
else:
default_image = None
print("load_demo, url params", params, "image", default_image, "domain", current_domain, "iframe", iframe_parent_domain)
if params.get("e", "0") == "1":
#update the image
#bind events
return [Image.open(default_image)]
return []
result.change(fn=lambda x:x, inputs=[prompt,result], outputs=[], js=f'''(p,img)=>window.uploadImage(p, img,"process_finished","demo_hf_{cfg.get("name")}_card", "finish")''')
run_button.click(generate, inputs=[prompt], outputs=[result], js=f'''(p)=>window.postMessageToParent(p,"process_started","demo_hf_{cfg.get("name")}_card", "click_go")''')
random_button.click(fn=lambda x:x, inputs=[prompt], outputs=[prompt], js='''(p)=>window.g(p)''')
demo.load(fn=on_demo_load, inputs=[], outputs=[result], js='''()=>onDemoLoad()''')
if __name__ == "__main__":
demo.queue().launch(show_api=False)