|
import spaces |
|
import gradio as gr |
|
import os |
|
import random |
|
import json |
|
import uuid |
|
from huggingface_hub import snapshot_download |
|
from diffusers import AutoencoderKL |
|
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler, AutoPipelineForText2Image, DiffusionPipeline |
|
from diffusers import EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, DPMSolverSDEScheduler |
|
from diffusers.models.attention_processor import AttnProcessor2_0 |
|
import torch |
|
from typing import Tuple |
|
from datetime import datetime |
|
import requests |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
import importlib |
|
|
|
MAX_SEED = 12211231 |
|
CACHE_EXAMPLES = "1" |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4192")) |
|
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "1") == "1" |
|
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" |
|
|
|
NUM_IMAGES_PER_PROMPT = 1 |
|
|
|
|
|
cfg = json.load(open("app.conf")) |
|
|
|
def load_pipeline_and_scheduler(): |
|
clip_skip = cfg.get("clip_skip", 0) |
|
|
|
|
|
ckpt_dir = snapshot_download(repo_id=cfg["model_id"]) |
|
|
|
|
|
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.float16) |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
ckpt_dir, |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
use_safetensors=True, |
|
variant="fp16" |
|
) |
|
pipe = pipe.to("cuda") |
|
|
|
pipe.unet.set_attn_processor(AttnProcessor2_0()) |
|
|
|
|
|
samplers = { |
|
"Euler a": EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config), |
|
"DPM++ SDE Karras": DPMSolverSDEScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True) |
|
} |
|
|
|
pipe.scheduler = samplers[cfg.get("sampler","DPM++ SDE Karras")] |
|
|
|
|
|
pipe.text_encoder.config.num_hidden_layers -= (clip_skip - 1) |
|
|
|
if USE_TORCH_COMPILE: |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
print("Model Compiled!") |
|
return pipe |
|
pipe = load_pipeline_and_scheduler() |
|
css = ''' |
|
.gradio-container{max-width: 560px !important} |
|
body { |
|
background-color: rgb(3, 7, 18); |
|
color: white; |
|
} |
|
.gradio-container { |
|
background-color: rgb(3, 7, 18) !important; |
|
border: none !important; |
|
} |
|
''' |
|
js = ''' |
|
<script src="https://raw.githubusercontent.com/insanensfwdev/hf-gradio-text2img-card/main/prompt.js"></script> |
|
<script> |
|
window.g=function(){ |
|
const conditions = { |
|
"tag": ["normal", "sexy", "porn"], |
|
"exclude_category": ["Clothing"], |
|
"count_per_tag": 1 |
|
}; |
|
prompt = generateSexyPrompt() |
|
console.log(prompt); |
|
return prompt |
|
} |
|
window.postMessageToParent = function(prompt, event, source, value) { |
|
// Construct the message object with the provided parameters |
|
console.log("post start",event, source, value); |
|
const message = { |
|
event: event, |
|
source: source, |
|
value: value |
|
}; |
|
|
|
// Post the message to the parent window |
|
window.parent.postMessage(message, '*'); |
|
console.log("post finish"); |
|
return prompt; |
|
} |
|
function uploadImage(prompt, images, event, source, value) { |
|
// Ensure we're in an iframe |
|
console.log("uploadImage", prompt, images && images.length > 0 ? images[0].image.url : null, event, source, value); |
|
if (window.self !== window.top) { |
|
// Get the first image from the gallery (assuming it's an array) |
|
let imageUrl = images && images.length > 0 ? images[0].image.url : null; |
|
|
|
// Prepare the data to send |
|
let data = { |
|
event: event, |
|
source: source, |
|
prompt: prompt, |
|
image: imageUrl |
|
}; |
|
|
|
// Post the message to the parent window |
|
window.parent.postMessage(JSON.stringify(data), '*'); |
|
} else { |
|
console.log("Not in an iframe, can't post to parent"); |
|
} |
|
} |
|
</script> |
|
''' |
|
def save_image(img): |
|
unique_name = str(uuid.uuid4()) + ".png" |
|
img.save(unique_name) |
|
return unique_name |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
@spaces.GPU(duration=60) |
|
def generate(prompt, progress=gr.Progress(track_tqdm=True)): |
|
negative_prompt = cfg.get("negative_prompt", "") |
|
style_selection = "" |
|
use_negative_prompt = True |
|
seed = 0 |
|
width = cfg.get("width", 1024) |
|
height = cfg.get("width", 768) |
|
inference_steps = cfg.get("inference_steps", 30) |
|
randomize_seed = True |
|
guidance_scale = cfg.get("guidance_scale", 7.5) |
|
prompt_str = cfg.get("prompt", "{prompt}").replace("{prompt}", prompt) |
|
|
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
generator = torch.Generator(pipe.device).manual_seed(seed) |
|
|
|
images = pipe( |
|
prompt=prompt_str, |
|
negative_prompt=negative_prompt, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=inference_steps, |
|
generator=generator, |
|
num_images_per_prompt=NUM_IMAGES_PER_PROMPT, |
|
output_type="pil", |
|
).images |
|
|
|
image_paths = [save_image(img) for img in images] |
|
print(image_paths) |
|
return image_paths |
|
|
|
|
|
with gr.Blocks(css=css,head=js,fill_height=True) as demo: |
|
with gr.Row(equal_height=False): |
|
with gr.Group(): |
|
result = gr.Gallery(value=cfg.get("cover_path",""), |
|
label="Result", show_label=False, columns=1, rows=1, show_share_button=True, |
|
show_download_button=True,allow_preview=True,interactive=False, min_width=cfg.get("window_min_width", 340) |
|
) |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
show_label=False, |
|
max_lines=2, |
|
lines=2, |
|
placeholder="Enter what you want to see", |
|
container=False, |
|
scale=5, |
|
min_width=100, |
|
) |
|
random_button = gr.Button("Surprise Me", scale=1, min_width=10) |
|
run_button = gr.Button( "GO!", scale=1, min_width=20) |
|
|
|
random_button.click(fn=lambda x:x, inputs=[prompt], outputs=[prompt], js='''()=>window.g()''') |
|
run_button.click(generate, inputs=[prompt], outputs=[result], js=f'''(p)=>window.postMessageToParent(p,"process_started","demo_hf_{cfg.get("name")}_card", "click_go")''') |
|
result.change(fn=lambda x:x, inputs=[prompt,result], outputs=[], js=f'''(p,img)=>window.uploadImage(p, img,"process_started","demo_hf_{cfg.get("name")}_card", "finish")''') |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=200).launch() |