Spaces:
Runtime error
Runtime error
Update train.py
Browse files
train.py
CHANGED
@@ -7,17 +7,17 @@ from transformers import AutoTokenizer, LlamaConfig, AutoModelForCausalLM, Llama
|
|
7 |
from datasets import load_dataset, Dataset
|
8 |
from tokenizers import ByteLevelBPETokenizer
|
9 |
|
10 |
-
BATCH_SIZE =
|
11 |
EPOCHS = 2
|
12 |
LEARNING_RATE = 2e-4
|
13 |
-
FACTOR = 22 *
|
14 |
MAX_SEQ_LENGTH = 128
|
15 |
VOCAB_SIZE = 32000
|
16 |
INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
|
17 |
INSTRUCT_DATASET = "nroggendorff/elephant"
|
18 |
OUTPUT_REPO = "nroggendorff/smallama"
|
19 |
-
INSTRUCT_FINETUNE_BOOL =
|
20 |
-
FP16 =
|
21 |
WARMUP_STEPS = 0
|
22 |
DECAY = 0
|
23 |
GRADIENT_ACCUMULATION_STEPS = 1
|
@@ -26,10 +26,10 @@ PUSH_TO_HUB = True
|
|
26 |
def load_data():
|
27 |
if not INSTRUCT_FINETUNE_BOOL:
|
28 |
dataset = load_dataset(INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
|
29 |
-
dataset = Dataset.from_generator(lambda: dataset.take(int(
|
30 |
else:
|
31 |
dataset = load_dataset(INSTRUCT_DATASET, split="train", streaming=True)
|
32 |
-
dataset = Dataset.from_generator(lambda: dataset.take(int(5e+
|
33 |
return dataset
|
34 |
|
35 |
def create_tokenizer(training_corpus):
|
|
|
7 |
from datasets import load_dataset, Dataset
|
8 |
from tokenizers import ByteLevelBPETokenizer
|
9 |
|
10 |
+
BATCH_SIZE = 128
|
11 |
EPOCHS = 2
|
12 |
LEARNING_RATE = 2e-4
|
13 |
+
FACTOR = 22 * 30
|
14 |
MAX_SEQ_LENGTH = 128
|
15 |
VOCAB_SIZE = 32000
|
16 |
INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
|
17 |
INSTRUCT_DATASET = "nroggendorff/elephant"
|
18 |
OUTPUT_REPO = "nroggendorff/smallama"
|
19 |
+
INSTRUCT_FINETUNE_BOOL = False
|
20 |
+
FP16 = False
|
21 |
WARMUP_STEPS = 0
|
22 |
DECAY = 0
|
23 |
GRADIENT_ACCUMULATION_STEPS = 1
|
|
|
26 |
def load_data():
|
27 |
if not INSTRUCT_FINETUNE_BOOL:
|
28 |
dataset = load_dataset(INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
|
29 |
+
dataset = Dataset.from_generator(lambda: dataset.take(int(3e+5)))
|
30 |
else:
|
31 |
dataset = load_dataset(INSTRUCT_DATASET, split="train", streaming=True)
|
32 |
+
dataset = Dataset.from_generator(lambda: dataset.take(int(5e+5)))
|
33 |
return dataset
|
34 |
|
35 |
def create_tokenizer(training_corpus):
|