nroggendorff commited on
Commit
9ab3040
·
verified ·
1 Parent(s): f7eb9ee

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+
4
+ import torch
5
+ from diffusers import StableDiffusionXLPipeline
6
+
7
+ pipeline = StableDiffusionXLPipeline.from_pretrained(
8
+ "stabilityai/stable-diffusion-xl-base-1.0"
9
+ ).to("cuda")
10
+
11
+ @spaces.GPU
12
+ def generate(prompt, negative_prompt, width, height, sample_steps):
13
+ return pipeline(prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, num_inference_steps=sample_steps).images[0]
14
+
15
+ with gr.Blocks() as interface:
16
+ with gr.Column():
17
+ with gr.Row():
18
+ with gr.Column():
19
+ prompt = gr.Textbox(label="Prompt", info="What do you want?", value="A perfectly red apple, 32k HDR, studio lighting", lines=4, interactive=True)
20
+ negative_prompt = gr.Textbox(label="Negative Prompt", info="What do you want to exclude from the image?", value="ugly, low quality", lines=4, interactive=True)
21
+ with gr.Column():
22
+ generate_button = gr.Button("Generate")
23
+ output = gr.Image()
24
+ with gr.Row():
25
+ with gr.Accordion(label="Advanced Settings", open=False):
26
+ with gr.Row():
27
+ with gr.Column():
28
+ width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=1024, minimum=128, maximum=4096, step=64, interactive=True)
29
+ height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=1024, minimum=128, maximum=4096, step=64, interactive=True)
30
+ with gr.Column():
31
+ sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=20, minimum=4, maximum=50, step=1, interactive=True)
32
+
33
+ generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps], outputs=[output])
34
+
35
+ if __name__ == "__main__":
36
+ interface.launch()