Spaces:
Running
Running
Testing ViT
Browse files
app.py
CHANGED
@@ -7,15 +7,15 @@ from transformers import CLIPProcessor, CLIPModel
|
|
7 |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
8 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
9 |
|
10 |
-
# load model
|
11 |
-
model = yolov5.load('keremberke/yolov5m-license-plate')
|
12 |
|
13 |
-
# set model parameters
|
14 |
-
model.conf = 0.5 # NMS confidence threshold
|
15 |
-
model.iou = 0.25 # NMS IoU threshold
|
16 |
-
model.agnostic = False # NMS class-agnostic
|
17 |
-
model.multi_label = False # NMS multiple labels per box
|
18 |
-
model.max_det = 1000 # maximum number of detections per image
|
19 |
|
20 |
def license_plate_detect(img):
|
21 |
results = model(img, size=640)
|
@@ -36,10 +36,13 @@ def read_license_number(img):
|
|
36 |
|
37 |
|
38 |
def zero_shot_classification(image, labels):
|
|
|
39 |
inputs = processor(text=labels,
|
40 |
images=image,
|
41 |
return_tensors="pt",
|
42 |
padding=True)
|
|
|
|
|
43 |
outputs = model(**inputs)
|
44 |
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
45 |
return logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
@@ -68,7 +71,9 @@ def check_solarplant_broken(image):
|
|
68 |
|
69 |
|
70 |
def greet(img):
|
71 |
-
|
|
|
|
|
72 |
if len(lns):
|
73 |
# return (seg,
|
74 |
return ("車牌: " + '; '.join(lns) + "\n\n" \
|
|
|
7 |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
8 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
9 |
|
10 |
+
# # load model
|
11 |
+
# model = yolov5.load('keremberke/yolov5m-license-plate')
|
12 |
|
13 |
+
# # set model parameters
|
14 |
+
# model.conf = 0.5 # NMS confidence threshold
|
15 |
+
# model.iou = 0.25 # NMS IoU threshold
|
16 |
+
# model.agnostic = False # NMS class-agnostic
|
17 |
+
# model.multi_label = False # NMS multiple labels per box
|
18 |
+
# model.max_det = 1000 # maximum number of detections per image
|
19 |
|
20 |
def license_plate_detect(img):
|
21 |
results = model(img, size=640)
|
|
|
36 |
|
37 |
|
38 |
def zero_shot_classification(image, labels):
|
39 |
+
print(type(image))
|
40 |
inputs = processor(text=labels,
|
41 |
images=image,
|
42 |
return_tensors="pt",
|
43 |
padding=True)
|
44 |
+
print(type(inputs))
|
45 |
+
print(inputs)
|
46 |
outputs = model(**inputs)
|
47 |
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
48 |
return logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
|
|
71 |
|
72 |
|
73 |
def greet(img):
|
74 |
+
print(type(img))
|
75 |
+
# lns = read_license_number(img)
|
76 |
+
lns = [1,2,3]
|
77 |
if len(lns):
|
78 |
# return (seg,
|
79 |
return ("車牌: " + '; '.join(lns) + "\n\n" \
|