Update app.py
Browse files
app.py
CHANGED
|
@@ -11,26 +11,25 @@ from transformers import (
|
|
| 11 |
VisionEncoderDecoderModel,
|
| 12 |
TrOCRProcessor,
|
| 13 |
)
|
| 14 |
-
|
| 15 |
from huggingface_hub import login
|
| 16 |
-
import os
|
| 17 |
|
|
|
|
| 18 |
hf_token = os.getenv("HF_TOKEN")
|
| 19 |
if hf_token:
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
|
| 23 |
TITLE = "Picture to Problem Solver"
|
| 24 |
DESCRIPTION = (
|
| 25 |
-
"Upload an image. I’ll read the text and a math/code/science-trained AI will help answer your question
|
| 26 |
-
"
|
| 27 |
)
|
| 28 |
|
| 29 |
# ---------------------------
|
| 30 |
# Load OCR (TrOCR)
|
| 31 |
# ---------------------------
|
| 32 |
-
# Use the "printed" variant for typed/scanned text.
|
| 33 |
-
# If you expect handwriting, switch to: microsoft/trocr-base-handwritten
|
| 34 |
OCR_MODEL_ID = os.getenv("OCR_MODEL_ID", "microsoft/trocr-base-printed")
|
| 35 |
ocr_processor = TrOCRProcessor.from_pretrained(OCR_MODEL_ID)
|
| 36 |
ocr_model = VisionEncoderDecoderModel.from_pretrained(OCR_MODEL_ID)
|
|
@@ -41,15 +40,17 @@ ocr_model.eval()
|
|
| 41 |
# ---------------------------
|
| 42 |
LLM_MODEL_ID = os.getenv("LLM_MODEL_ID", "facebook/MobileLLM-R1-950M")
|
| 43 |
|
| 44 |
-
# Device & dtype selection that plays nice on Spaces
|
| 45 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 46 |
-
|
| 47 |
-
torch_dtype = torch.bfloat16 if (device == "cuda" and torch.cuda.is_bf16_supported()) else torch.float32
|
| 48 |
|
| 49 |
llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_ID, use_fast=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 51 |
LLM_MODEL_ID,
|
| 52 |
-
|
| 53 |
low_cpu_mem_usage=True,
|
| 54 |
device_map="auto" if device == "cuda" else None,
|
| 55 |
)
|
|
@@ -57,19 +58,16 @@ llm_model.eval()
|
|
| 57 |
if device == "cpu":
|
| 58 |
llm_model.to(device)
|
| 59 |
|
| 60 |
-
# Ensure EOS/BOS tokens exist
|
| 61 |
eos_token_id = llm_tokenizer.eos_token_id
|
| 62 |
if eos_token_id is None:
|
| 63 |
-
# Fallback: add one if truly missing (rare)
|
| 64 |
llm_tokenizer.add_special_tokens({"eos_token": "</s>"})
|
| 65 |
llm_model.resize_token_embeddings(len(llm_tokenizer))
|
| 66 |
eos_token_id = llm_tokenizer.eos_token_id
|
| 67 |
|
| 68 |
-
|
| 69 |
SYSTEM_INSTRUCTION = (
|
| 70 |
"You are a precise, step-by-step technical assistant. "
|
| 71 |
"You excel at math, programming (Python, C++), and scientific reasoning. "
|
| 72 |
-
"Be concise, show steps when helpful, and avoid hallucinations.
|
| 73 |
)
|
| 74 |
|
| 75 |
USER_PROMPT_TEMPLATE = (
|
|
@@ -85,13 +83,11 @@ def build_prompt(ocr_text: str, user_question: str) -> str:
|
|
| 85 |
q = f"User question: {user_question.strip()}"
|
| 86 |
else:
|
| 87 |
q = "Please summarize the key information and explain any math/code/science content."
|
| 88 |
-
|
| 89 |
return f"{SYSTEM_INSTRUCTION}\n\n" + USER_PROMPT_TEMPLATE.format(
|
| 90 |
-
ocr_text=ocr_text.strip()
|
| 91 |
question_hint=q,
|
| 92 |
)
|
| 93 |
|
| 94 |
-
|
| 95 |
@torch.inference_mode()
|
| 96 |
def run_pipeline(
|
| 97 |
image: Image.Image,
|
|
@@ -100,51 +96,43 @@ def run_pipeline(
|
|
| 100 |
temperature: float = 0.2,
|
| 101 |
top_p: float = 0.9,
|
| 102 |
) -> Tuple[str, str]:
|
| 103 |
-
"""
|
| 104 |
-
Returns:
|
| 105 |
-
(extracted_text, model_answer)
|
| 106 |
-
"""
|
| 107 |
if image is None:
|
| 108 |
return "", "Please upload an image."
|
| 109 |
|
| 110 |
# --- OCR ---
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
with torch.inference_mode():
|
| 114 |
ocr_ids = ocr_model.generate(pixel_values, max_new_tokens=256)
|
| 115 |
-
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
# --- Build prompt
|
| 118 |
prompt = build_prompt(extracted_text, question)
|
| 119 |
|
| 120 |
# --- LLM Inference ---
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
inputs = {k: v.to(llm_model.device) for k, v in inputs.items()}
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
pad_token_id=llm_tokenizer.eos_token_id, # keep decoding clean
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
-
output_ids = llm_model.generate(**inputs, **generation_kwargs)
|
| 137 |
-
# We only want the newly generated part for readability
|
| 138 |
-
gen_text = llm_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
return extracted_text, gen_text
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
def demo_ui():
|
| 149 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 150 |
gr.Markdown(f"# {TITLE}")
|
|
@@ -155,7 +143,7 @@ def demo_ui():
|
|
| 155 |
image_input = gr.Image(type="pil", label="Upload an image")
|
| 156 |
question = gr.Textbox(
|
| 157 |
label="Ask a question about the image (optional)",
|
| 158 |
-
placeholder="e.g., Summarize, extract key numbers, explain this formula,
|
| 159 |
)
|
| 160 |
with gr.Accordion("Generation settings (advanced)", open=False):
|
| 161 |
max_new_tokens = gr.Slider(32, 1024, value=256, step=16, label="max_new_tokens")
|
|
@@ -174,17 +162,6 @@ def demo_ui():
|
|
| 174 |
outputs=[ocr_out, llm_out],
|
| 175 |
)
|
| 176 |
|
| 177 |
-
gr.Examples(
|
| 178 |
-
label="Try these sample prompts (use with your own images)",
|
| 179 |
-
examples=[
|
| 180 |
-
["", "Summarize the document."],
|
| 181 |
-
["", "Extract all dates and amounts, then total the amounts."],
|
| 182 |
-
["", "Explain the equation and solve for x."],
|
| 183 |
-
["", "Convert the pseudocode in the image to Python."],
|
| 184 |
-
],
|
| 185 |
-
inputs=[image_input, question],
|
| 186 |
-
)
|
| 187 |
-
|
| 188 |
gr.Markdown(
|
| 189 |
"—\n**Licensing reminder:** facebook/MobileLLM-R1-950M is typically released for non-commercial research use. "
|
| 190 |
"Review the model card before production use."
|
|
@@ -192,7 +169,6 @@ def demo_ui():
|
|
| 192 |
|
| 193 |
return demo
|
| 194 |
|
| 195 |
-
|
| 196 |
if __name__ == "__main__":
|
| 197 |
demo = demo_ui()
|
| 198 |
demo.launch()
|
|
|
|
| 11 |
VisionEncoderDecoderModel,
|
| 12 |
TrOCRProcessor,
|
| 13 |
)
|
|
|
|
| 14 |
from huggingface_hub import login
|
|
|
|
| 15 |
|
| 16 |
+
# Optional: login via repo secret HF_TOKEN in Spaces
|
| 17 |
hf_token = os.getenv("HF_TOKEN")
|
| 18 |
if hf_token:
|
| 19 |
+
try:
|
| 20 |
+
login(token=hf_token)
|
| 21 |
+
except Exception:
|
| 22 |
+
pass
|
| 23 |
|
| 24 |
TITLE = "Picture to Problem Solver"
|
| 25 |
DESCRIPTION = (
|
| 26 |
+
"Upload an image. I’ll read the text and a math/code/science-trained AI will help answer your question.\n\n"
|
| 27 |
+
"⚠️ Note: facebook/MobileLLM-R1-950M is released for non-commercial research use."
|
| 28 |
)
|
| 29 |
|
| 30 |
# ---------------------------
|
| 31 |
# Load OCR (TrOCR)
|
| 32 |
# ---------------------------
|
|
|
|
|
|
|
| 33 |
OCR_MODEL_ID = os.getenv("OCR_MODEL_ID", "microsoft/trocr-base-printed")
|
| 34 |
ocr_processor = TrOCRProcessor.from_pretrained(OCR_MODEL_ID)
|
| 35 |
ocr_model = VisionEncoderDecoderModel.from_pretrained(OCR_MODEL_ID)
|
|
|
|
| 40 |
# ---------------------------
|
| 41 |
LLM_MODEL_ID = os.getenv("LLM_MODEL_ID", "facebook/MobileLLM-R1-950M")
|
| 42 |
|
|
|
|
| 43 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 44 |
+
dtype = torch.bfloat16 if (device == "cuda" and torch.cuda.is_bf16_supported()) else torch.float32
|
|
|
|
| 45 |
|
| 46 |
llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_ID, use_fast=True)
|
| 47 |
+
# Ensure pad token exists to prevent warnings during generation
|
| 48 |
+
if llm_tokenizer.pad_token_id is None and llm_tokenizer.eos_token_id is not None:
|
| 49 |
+
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
| 50 |
+
|
| 51 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 52 |
LLM_MODEL_ID,
|
| 53 |
+
dtype=dtype,
|
| 54 |
low_cpu_mem_usage=True,
|
| 55 |
device_map="auto" if device == "cuda" else None,
|
| 56 |
)
|
|
|
|
| 58 |
if device == "cpu":
|
| 59 |
llm_model.to(device)
|
| 60 |
|
|
|
|
| 61 |
eos_token_id = llm_tokenizer.eos_token_id
|
| 62 |
if eos_token_id is None:
|
|
|
|
| 63 |
llm_tokenizer.add_special_tokens({"eos_token": "</s>"})
|
| 64 |
llm_model.resize_token_embeddings(len(llm_tokenizer))
|
| 65 |
eos_token_id = llm_tokenizer.eos_token_id
|
| 66 |
|
|
|
|
| 67 |
SYSTEM_INSTRUCTION = (
|
| 68 |
"You are a precise, step-by-step technical assistant. "
|
| 69 |
"You excel at math, programming (Python, C++), and scientific reasoning. "
|
| 70 |
+
"Be concise, show steps when helpful, and avoid hallucinations."
|
| 71 |
)
|
| 72 |
|
| 73 |
USER_PROMPT_TEMPLATE = (
|
|
|
|
| 83 |
q = f"User question: {user_question.strip()}"
|
| 84 |
else:
|
| 85 |
q = "Please summarize the key information and explain any math/code/science content."
|
|
|
|
| 86 |
return f"{SYSTEM_INSTRUCTION}\n\n" + USER_PROMPT_TEMPLATE.format(
|
| 87 |
+
ocr_text=(ocr_text or "").strip() or "(no text detected)",
|
| 88 |
question_hint=q,
|
| 89 |
)
|
| 90 |
|
|
|
|
| 91 |
@torch.inference_mode()
|
| 92 |
def run_pipeline(
|
| 93 |
image: Image.Image,
|
|
|
|
| 96 |
temperature: float = 0.2,
|
| 97 |
top_p: float = 0.9,
|
| 98 |
) -> Tuple[str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
if image is None:
|
| 100 |
return "", "Please upload an image."
|
| 101 |
|
| 102 |
# --- OCR ---
|
| 103 |
+
try:
|
| 104 |
+
pixel_values = ocr_processor(images=image, return_tensors="pt").pixel_values
|
|
|
|
| 105 |
ocr_ids = ocr_model.generate(pixel_values, max_new_tokens=256)
|
| 106 |
+
extracted_text = ocr_processor.batch_decode(ocr_ids, skip_special_tokens=True)[0].strip()
|
| 107 |
+
except Exception as e:
|
| 108 |
+
return "", f"OCR failed: {e}"
|
| 109 |
|
| 110 |
+
# --- Build prompt ---
|
| 111 |
prompt = build_prompt(extracted_text, question)
|
| 112 |
|
| 113 |
# --- LLM Inference ---
|
| 114 |
+
try:
|
| 115 |
+
inputs = llm_tokenizer(prompt, return_tensors="pt")
|
| 116 |
+
inputs = {k: v.to(llm_model.device if device == "cuda" else device) for k, v in inputs.items()}
|
| 117 |
+
|
| 118 |
+
generation_kwargs = dict(
|
| 119 |
+
max_new_tokens=max_new_tokens,
|
| 120 |
+
do_sample=temperature > 0,
|
| 121 |
+
temperature=max(0.0, min(temperature, 1.5)),
|
| 122 |
+
top_p=max(0.1, min(top_p, 1.0)),
|
| 123 |
+
eos_token_id=eos_token_id,
|
| 124 |
+
pad_token_id=llm_tokenizer.pad_token_id if llm_tokenizer.pad_token_id is not None else eos_token_id,
|
| 125 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
output_ids = llm_model.generate(**inputs, **generation_kwargs)
|
| 128 |
+
gen_text = llm_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 129 |
+
if gen_text.startswith(prompt):
|
| 130 |
+
gen_text = gen_text[len(prompt):].lstrip()
|
| 131 |
+
except Exception as e:
|
| 132 |
+
gen_text = f"LLM inference failed: {e}"
|
| 133 |
|
| 134 |
return extracted_text, gen_text
|
| 135 |
|
|
|
|
|
|
|
| 136 |
def demo_ui():
|
| 137 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 138 |
gr.Markdown(f"# {TITLE}")
|
|
|
|
| 143 |
image_input = gr.Image(type="pil", label="Upload an image")
|
| 144 |
question = gr.Textbox(
|
| 145 |
label="Ask a question about the image (optional)",
|
| 146 |
+
placeholder="e.g., Summarize, extract key numbers, explain this formula, convert code to Python...",
|
| 147 |
)
|
| 148 |
with gr.Accordion("Generation settings (advanced)", open=False):
|
| 149 |
max_new_tokens = gr.Slider(32, 1024, value=256, step=16, label="max_new_tokens")
|
|
|
|
| 162 |
outputs=[ocr_out, llm_out],
|
| 163 |
)
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
gr.Markdown(
|
| 166 |
"—\n**Licensing reminder:** facebook/MobileLLM-R1-950M is typically released for non-commercial research use. "
|
| 167 |
"Review the model card before production use."
|
|
|
|
| 169 |
|
| 170 |
return demo
|
| 171 |
|
|
|
|
| 172 |
if __name__ == "__main__":
|
| 173 |
demo = demo_ui()
|
| 174 |
demo.launch()
|