Spaces:
Runtime error
Runtime error
| import os | |
| from typing import List | |
| import torch | |
| from typing import Optional, Union, Any, Dict, Tuple, List, Callable | |
| from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor | |
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| deprecate, | |
| logging, | |
| replace_example_docstring, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.pipelines.controlnet.pipeline_controlnet import retrieve_timesteps | |
| from diffusers import StableDiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput | |
| from diffusers.pipelines.controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline | |
| from diffusers.models.controlnet import ControlNetModel | |
| from diffusers.image_processor import PipelineImageInput | |
| from diffusers.pipelines.controlnet import MultiControlNetModel | |
| from PIL import Image | |
| from safetensors import safe_open | |
| from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
| from torchvision import transforms | |
| from .style_encoder import Style_Aware_Encoder | |
| from .tools import pre_processing | |
| from .utils import is_torch2_available | |
| if is_torch2_available(): | |
| from .attention_processor import ( | |
| AttnProcessor2_0 as AttnProcessor, | |
| ) | |
| from .attention_processor import ( | |
| CNAttnProcessor2_0 as CNAttnProcessor, | |
| ) | |
| from .attention_processor import ( | |
| IPAttnProcessor2_0 as IPAttnProcessor, | |
| ) | |
| else: | |
| from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor | |
| from .resampler import Resampler | |
| class ImageProjModel(torch.nn.Module): | |
| """Projection Model""" | |
| def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): | |
| super().__init__() | |
| self.cross_attention_dim = cross_attention_dim | |
| self.clip_extra_context_tokens = clip_extra_context_tokens | |
| self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) | |
| self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
| def forward(self, image_embeds): | |
| embeds = image_embeds | |
| clip_extra_context_tokens = self.proj(embeds).reshape( | |
| -1, self.clip_extra_context_tokens, self.cross_attention_dim | |
| ) | |
| clip_extra_context_tokens = self.norm(clip_extra_context_tokens) | |
| return clip_extra_context_tokens | |
| class MLPProjModel(torch.nn.Module): | |
| """SD model with image prompt""" | |
| def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024): | |
| super().__init__() | |
| self.proj = torch.nn.Sequential( | |
| torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim), | |
| torch.nn.GELU(), | |
| torch.nn.Linear(clip_embeddings_dim, cross_attention_dim), | |
| torch.nn.LayerNorm(cross_attention_dim) | |
| ) | |
| def forward(self, image_embeds): | |
| clip_extra_context_tokens = self.proj(image_embeds) | |
| return clip_extra_context_tokens | |
| class IPAdapter: | |
| def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4): | |
| self.device = device | |
| self.image_encoder_path = image_encoder_path | |
| self.ip_ckpt = ip_ckpt | |
| self.num_tokens = num_tokens | |
| self.pipe = sd_pipe.to(self.device) | |
| self.set_ip_adapter() | |
| # load image encoder | |
| self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to( | |
| self.device, dtype=torch.float16 | |
| ) | |
| self.clip_image_processor = CLIPImageProcessor() | |
| # image proj model | |
| self.image_proj_model = self.init_proj() | |
| self.load_ip_adapter() | |
| def init_proj(self): | |
| image_proj_model = ImageProjModel( | |
| cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
| clip_embeddings_dim=self.image_encoder.config.projection_dim, | |
| clip_extra_context_tokens=self.num_tokens, | |
| ).to(self.device, dtype=torch.float16) | |
| return image_proj_model | |
| def set_ip_adapter(self): | |
| unet = self.pipe.unet | |
| attn_procs = {} | |
| for name in unet.attn_processors.keys(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = unet.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = unet.config.block_out_channels[block_id] | |
| if cross_attention_dim is None: | |
| attn_procs[name] = AttnProcessor() | |
| else: | |
| attn_procs[name] = IPAttnProcessor( | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| scale=1.0, | |
| num_tokens=self.num_tokens, | |
| ).to(self.device, dtype=torch.float16) | |
| unet.set_attn_processor(attn_procs) | |
| if hasattr(self.pipe, "controlnet"): | |
| if isinstance(self.pipe.controlnet, MultiControlNetModel): | |
| for controlnet in self.pipe.controlnet.nets: | |
| controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) | |
| else: | |
| self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) | |
| def load_ip_adapter(self): | |
| if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": | |
| state_dict = {"image_proj": {}, "ip_adapter": {}} | |
| with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: | |
| for key in f.keys(): | |
| if key.startswith("image_proj."): | |
| state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) | |
| elif key.startswith("ip_adapter."): | |
| state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) | |
| else: | |
| state_dict = torch.load(self.ip_ckpt, map_location="cpu") | |
| self.image_proj_model.load_state_dict(state_dict["image_proj"]) | |
| ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
| ip_layers.load_state_dict(state_dict["ip_adapter"]) | |
| def get_image_embeds(self, pil_image=None, clip_image_embeds=None): | |
| if pil_image is not None: | |
| if isinstance(pil_image, Image.Image): | |
| pil_image = [pil_image] | |
| clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values | |
| clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds | |
| else: | |
| clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16) | |
| image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
| uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds)) | |
| return image_prompt_embeds, uncond_image_prompt_embeds | |
| def set_scale(self, scale): | |
| for attn_processor in self.pipe.unet.attn_processors.values(): | |
| if isinstance(attn_processor, IPAttnProcessor): | |
| attn_processor.scale = scale | |
| def generate( | |
| self, | |
| pil_image=None, | |
| clip_image_embeds=None, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=4, | |
| seed=None, | |
| guidance_scale=7.5, | |
| num_inference_steps=30, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| if pil_image is not None: | |
| num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) | |
| else: | |
| num_prompts = clip_image_embeds.size(0) | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( | |
| pil_image=pil_image, clip_image_embeds=clip_image_embeds | |
| ) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
| with torch.inference_mode(): | |
| prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( | |
| prompt, | |
| device=self.device, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) | |
| negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) | |
| generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| **kwargs, | |
| ).images | |
| return images | |
| class IPAdapterXL(IPAdapter): | |
| """SDXL""" | |
| def generate( | |
| self, | |
| pil_image, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=4, | |
| seed=None, | |
| num_inference_steps=30, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) | |
| negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) | |
| generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| **kwargs, | |
| ).images | |
| return images | |
| class IPAdapterPlus(IPAdapter): | |
| """IP-Adapter with fine-grained features""" | |
| def init_proj(self): | |
| image_proj_model = Resampler( | |
| dim=self.pipe.unet.config.cross_attention_dim, | |
| depth=4, | |
| dim_head=64, | |
| heads=12, | |
| num_queries=self.num_tokens, | |
| embedding_dim=self.image_encoder.config.hidden_size, | |
| output_dim=self.pipe.unet.config.cross_attention_dim, | |
| ff_mult=4, | |
| ).to(self.device, dtype=torch.float16) | |
| return image_proj_model | |
| def get_image_embeds(self, pil_image=None, clip_image_embeds=None): | |
| if isinstance(pil_image, Image.Image): | |
| pil_image = [pil_image] | |
| clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values | |
| clip_image = clip_image.to(self.device, dtype=torch.float16) | |
| clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] | |
| image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
| uncond_clip_image_embeds = self.image_encoder( | |
| torch.zeros_like(clip_image), output_hidden_states=True | |
| ).hidden_states[-2] | |
| uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) | |
| return image_prompt_embeds, uncond_image_prompt_embeds | |
| class IPAdapterFull(IPAdapterPlus): | |
| """IP-Adapter with full features""" | |
| def init_proj(self): | |
| image_proj_model = MLPProjModel( | |
| cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
| clip_embeddings_dim=self.image_encoder.config.hidden_size, | |
| ).to(self.device, dtype=torch.float16) | |
| return image_proj_model | |
| class IPAdapterPlusXL(IPAdapter): | |
| """SDXL""" | |
| def init_proj(self): | |
| image_proj_model = Resampler( | |
| dim=1280, | |
| depth=4, | |
| dim_head=64, | |
| heads=20, | |
| num_queries=self.num_tokens, | |
| embedding_dim=self.image_encoder.config.hidden_size, | |
| output_dim=self.pipe.unet.config.cross_attention_dim, | |
| ff_mult=4, | |
| ).to(self.device, dtype=torch.float16) | |
| return image_proj_model | |
| def get_image_embeds(self, pil_image): | |
| if isinstance(pil_image, Image.Image): | |
| pil_image = [pil_image] | |
| clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values | |
| clip_image = clip_image.to(self.device, dtype=torch.float16) | |
| clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] | |
| image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
| uncond_clip_image_embeds = self.image_encoder( | |
| torch.zeros_like(clip_image), output_hidden_states=True | |
| ).hidden_states[-2] | |
| uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) | |
| return image_prompt_embeds, uncond_image_prompt_embeds | |
| def generate( | |
| self, | |
| pil_image, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=4, | |
| seed=None, | |
| num_inference_steps=30, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) | |
| negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) | |
| generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| **kwargs, | |
| ).images | |
| return images | |
| def StyleProcessor(style_image, device): | |
| transform = transforms.Compose([ | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5], [0.5]), | |
| ]) | |
| # centercrop for style condition | |
| crop = transforms.Compose( | |
| [ | |
| transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR), | |
| transforms.CenterCrop(512), | |
| ] | |
| ) | |
| style_image = crop(style_image) | |
| high_style_patch, middle_style_patch, low_style_patch = pre_processing(style_image.convert("RGB"), transform) | |
| # shuffling | |
| high_style_patch, middle_style_patch, low_style_patch = (high_style_patch[torch.randperm(high_style_patch.shape[0])], | |
| middle_style_patch[torch.randperm(middle_style_patch.shape[0])], | |
| low_style_patch[torch.randperm(low_style_patch.shape[0])]) | |
| return (high_style_patch.to(device, dtype=torch.float32), middle_style_patch.to(device, dtype=torch.float32), low_style_patch.to(device, dtype=torch.float32)) | |
| class StyleShot(torch.nn.Module): | |
| """StyleShot generation""" | |
| def __init__(self, device, pipe, ip_ckpt, style_aware_encoder_ckpt, transformer_patch): | |
| super().__init__() | |
| self.num_tokens = 6 | |
| self.device = device | |
| self.pipe = pipe | |
| self.set_ip_adapter(device) | |
| self.ip_ckpt = ip_ckpt | |
| self.style_aware_encoder = Style_Aware_Encoder(CLIPVisionModelWithProjection.from_pretrained(transformer_patch)).to(self.device, dtype=torch.float32) | |
| self.style_aware_encoder.load_state_dict(torch.load(style_aware_encoder_ckpt)) | |
| self.style_image_proj_modules = self.init_proj() | |
| self.load_ip_adapter() | |
| self.pipe = self.pipe.to(self.device, dtype=torch.float32) | |
| def init_proj(self): | |
| style_image_proj_modules = torch.nn.ModuleList([ | |
| ImageProjModel( | |
| cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
| clip_embeddings_dim=self.style_aware_encoder.projection_dim, | |
| clip_extra_context_tokens=2, | |
| ), | |
| ImageProjModel( | |
| cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
| clip_embeddings_dim=self.style_aware_encoder.projection_dim, | |
| clip_extra_context_tokens=2, | |
| ), | |
| ImageProjModel( | |
| cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
| clip_embeddings_dim=self.style_aware_encoder.projection_dim, | |
| clip_extra_context_tokens=2, | |
| )]) | |
| return style_image_proj_modules.to(self.device, dtype=torch.float32) | |
| def load_ip_adapter(self): | |
| sd = torch.load(self.ip_ckpt, map_location="cpu") | |
| style_image_proj_sd = {} | |
| ip_sd = {} | |
| controlnet_sd = {} | |
| for k in sd: | |
| if k.startswith("unet"): | |
| pass | |
| elif k.startswith("style_image_proj_modules"): | |
| style_image_proj_sd[k.replace("style_image_proj_modules.", "")] = sd[k] | |
| elif k.startswith("adapter_modules"): | |
| ip_sd[k.replace("adapter_modules.", "")] = sd[k] | |
| elif k.startswith("controlnet"): | |
| controlnet_sd[k.replace("controlnet.", "")] = sd[k] | |
| # Load state dict for image_proj_model and adapter_modules | |
| self.style_image_proj_modules.load_state_dict(style_image_proj_sd, strict=True) | |
| ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
| if hasattr(self.pipe, "controlnet") and isinstance(self.pipe, StyleContentStableDiffusionControlNetPipeline): | |
| self.pipe.controlnet.load_state_dict(controlnet_sd, strict=True) | |
| ip_layers.load_state_dict(ip_sd, strict=True) | |
| def set_ip_adapter(self, device): | |
| unet = self.pipe.unet | |
| attn_procs = {} | |
| for name in unet.attn_processors.keys(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = unet.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = unet.config.block_out_channels[block_id] | |
| if cross_attention_dim is None: | |
| attn_procs[name] = AttnProcessor() | |
| else: | |
| attn_procs[name] = IPAttnProcessor( | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| scale=1.0, | |
| num_tokens=self.num_tokens, | |
| ).to(device, dtype=torch.float16) | |
| if hasattr(self.pipe, "controlnet") and not isinstance(self.pipe, StyleContentStableDiffusionControlNetPipeline): | |
| if isinstance(self.pipe.controlnet, MultiControlNetModel): | |
| for controlnet in self.pipe.controlnet.nets: | |
| controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) | |
| else: | |
| self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) | |
| unet.set_attn_processor(attn_procs) | |
| def get_image_embeds(self, style_image=None): | |
| style_image = StyleProcessor(style_image, self.device) | |
| style_embeds = self.style_aware_encoder(style_image).to(self.device, dtype=torch.float32) | |
| style_ip_tokens = [] | |
| uncond_style_ip_tokens = [] | |
| for idx, style_embed in enumerate([style_embeds[:, 0, :], style_embeds[:, 1, :], style_embeds[:, 2, :]]): | |
| style_ip_tokens.append(self.style_image_proj_modules[idx](style_embed)) | |
| uncond_style_ip_tokens.append(self.style_image_proj_modules[idx](torch.zeros_like(style_embed))) | |
| style_ip_tokens = torch.cat(style_ip_tokens, dim=1) | |
| uncond_style_ip_tokens = torch.cat(uncond_style_ip_tokens, dim=1) | |
| return style_ip_tokens, uncond_style_ip_tokens | |
| def set_scale(self, scale): | |
| for attn_processor in self.pipe.unet.attn_processors.values(): | |
| if isinstance(attn_processor, IPAttnProcessor): | |
| attn_processor.scale = scale | |
| def samples(self, image_prompt_embeds, uncond_image_prompt_embeds, num_samples, device, prompt, negative_prompt, | |
| seed, guidance_scale, num_inference_steps, content_image, **kwargs, ): | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
| with torch.inference_mode(): | |
| prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( | |
| prompt, | |
| device=device, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) | |
| negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) | |
| generator = torch.Generator(device).manual_seed(seed) if seed is not None else None | |
| if content_image is None: | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| **kwargs, | |
| ).images | |
| else: | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| image=content_image, | |
| style_embeddings=image_prompt_embeds, | |
| negative_style_embeddings=uncond_image_prompt_embeds, | |
| **kwargs, | |
| ).images | |
| return images | |
| def generate( | |
| self, | |
| style_image=None, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=1, | |
| seed=42, | |
| guidance_scale=7.5, | |
| num_inference_steps=50, | |
| content_image=None, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = 1 | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| style_ip_tokens, uncond_style_ip_tokens = self.get_image_embeds(style_image) | |
| generate_images = [] | |
| for p in prompt: | |
| images = self.samples(style_ip_tokens, uncond_style_ip_tokens, num_samples, self.device, p * num_prompts, negative_prompt, seed, guidance_scale, num_inference_steps, content_image, **kwargs, ) | |
| generate_images.append(images) | |
| return generate_images | |
| class StyleContentStableDiffusionControlNetPipeline(StableDiffusionControlNetPipeline): | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| image: PipelineImageInput = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| controlnet_conditioning_scale: Union[float, List[float]] = 1.0, | |
| guess_mode: bool = False, | |
| control_guidance_start: Union[float, List[float]] = 0.0, | |
| control_guidance_end: Union[float, List[float]] = 1.0, | |
| clip_skip: Optional[int] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| style_embeddings: Optional[torch.FloatTensor] = None, | |
| negative_style_embeddings: Optional[torch.FloatTensor] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: | |
| `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): | |
| The ControlNet input condition to provide guidance to the `unet` for generation. If the type is | |
| specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be | |
| accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height | |
| and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in | |
| `init`, images must be passed as a list such that each element of the list can be correctly batched for | |
| input to a single ControlNet. When `prompt` is a list, and if a list of images is passed for a single ControlNet, | |
| each will be paired with each prompt in the `prompt` list. This also applies to multiple ControlNets, | |
| where a list of image lists can be passed to batch for each prompt and each ControlNet. | |
| height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
| ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*): | |
| Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. | |
| Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding | |
| if `do_classifier_free_guidance` is set to `True`. | |
| If not provided, embeddings are computed from the `ip_adapter_image` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that calls every `callback_steps` steps during inference. The function is called with the | |
| following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function is called. If not specified, the callback is called at | |
| every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
| [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | |
| The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added | |
| to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set | |
| the corresponding scale as a list. | |
| guess_mode (`bool`, *optional*, defaults to `False`): | |
| The ControlNet encoder tries to recognize the content of the input image even if you remove all | |
| prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. | |
| control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): | |
| The percentage of total steps at which the ControlNet starts applying. | |
| control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): | |
| The percentage of total steps at which the ControlNet stops applying. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeine class. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
| second element is a list of `bool`s indicating whether the corresponding generated image contains | |
| "not-safe-for-work" (nsfw) content. | |
| """ | |
| callback = kwargs.pop("callback", None) | |
| callback_steps = kwargs.pop("callback_steps", None) | |
| if callback is not None: | |
| deprecate( | |
| "callback", | |
| "1.0.0", | |
| "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
| ) | |
| if callback_steps is not None: | |
| deprecate( | |
| "callback_steps", | |
| "1.0.0", | |
| "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
| ) | |
| controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet | |
| # align format for control guidance | |
| if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): | |
| control_guidance_start = len(control_guidance_end) * [control_guidance_start] | |
| elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): | |
| control_guidance_end = len(control_guidance_start) * [control_guidance_end] | |
| elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): | |
| mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 | |
| control_guidance_start, control_guidance_end = ( | |
| mult * [control_guidance_start], | |
| mult * [control_guidance_end], | |
| ) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| image, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| controlnet_conditioning_scale, | |
| control_guidance_start, | |
| control_guidance_end, | |
| callback_on_step_end_tensor_inputs, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._clip_skip = clip_skip | |
| self._cross_attention_kwargs = cross_attention_kwargs | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): | |
| controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) | |
| global_pool_conditions = ( | |
| controlnet.config.global_pool_conditions | |
| if isinstance(controlnet, ControlNetModel) | |
| else controlnet.nets[0].config.global_pool_conditions | |
| ) | |
| guess_mode = guess_mode or global_pool_conditions | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
| ) | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| self.do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| clip_skip=self.clip_skip, | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| self.do_classifier_free_guidance, | |
| ) | |
| # 4. Prepare image | |
| if isinstance(controlnet, ControlNetModel): | |
| image = self.prepare_image( | |
| image=image, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| guess_mode=guess_mode, | |
| ) | |
| height, width = image.shape[-2:] | |
| elif isinstance(controlnet, MultiControlNetModel): | |
| images = [] | |
| # Nested lists as ControlNet condition | |
| if isinstance(image[0], list): | |
| # Transpose the nested image list | |
| image = [list(t) for t in zip(*image)] | |
| for image_ in image: | |
| image_ = self.prepare_image( | |
| image=image_, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| guess_mode=guess_mode, | |
| ) | |
| images.append(image_) | |
| image = images | |
| height, width = image[0].shape[-2:] | |
| else: | |
| assert False | |
| # 5. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| self._num_timesteps = len(timesteps) | |
| # 6. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6.5 Optionally get Guidance Scale Embedding | |
| timestep_cond = None | |
| if self.unet.config.time_cond_proj_dim is not None: | |
| guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
| timestep_cond = self.get_guidance_scale_embedding( | |
| guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
| ).to(device=device, dtype=latents.dtype) | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7.1 Add image embeds for IP-Adapter | |
| added_cond_kwargs = ( | |
| {"image_embeds": image_embeds} | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None | |
| else None | |
| ) | |
| # 7.2 Create tensor stating which controlnets to keep | |
| controlnet_keep = [] | |
| for i in range(len(timesteps)): | |
| keeps = [ | |
| 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | |
| for s, e in zip(control_guidance_start, control_guidance_end) | |
| ] | |
| controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) | |
| # 8. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| is_unet_compiled = is_compiled_module(self.unet) | |
| is_controlnet_compiled = is_compiled_module(self.controlnet) | |
| is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # Relevant thread: | |
| # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428 | |
| if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: | |
| torch._inductor.cudagraph_mark_step_begin() | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # controlnet(s) inference | |
| if guess_mode and self.do_classifier_free_guidance: | |
| # Infer ControlNet only for the conditional batch. | |
| control_model_input = latents | |
| control_model_input = self.scheduler.scale_model_input(control_model_input, t) | |
| controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] | |
| else: | |
| control_model_input = latent_model_input | |
| controlnet_prompt_embeds = prompt_embeds | |
| if isinstance(controlnet_keep[i], list): | |
| cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] | |
| else: | |
| controlnet_cond_scale = controlnet_conditioning_scale | |
| if isinstance(controlnet_cond_scale, list): | |
| controlnet_cond_scale = controlnet_cond_scale[0] | |
| cond_scale = controlnet_cond_scale * controlnet_keep[i] | |
| if self.do_classifier_free_guidance: | |
| style_embeddings_input = torch.cat([negative_style_embeddings, style_embeddings]) | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| control_model_input, | |
| t, | |
| encoder_hidden_states=style_embeddings_input, | |
| controlnet_cond=image, | |
| conditioning_scale=cond_scale, | |
| guess_mode=guess_mode, | |
| return_dict=False, | |
| ) | |
| if guess_mode and self.do_classifier_free_guidance: | |
| # Infered ControlNet only for the conditional batch. | |
| # To apply the output of ControlNet to both the unconditional and conditional batches, | |
| # add 0 to the unconditional batch to keep it unchanged. | |
| down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] | |
| mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep_cond=timestep_cond, | |
| cross_attention_kwargs=self.cross_attention_kwargs, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| # If we do sequential model offloading, let's offload unet and controlnet | |
| # manually for max memory savings | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.unet.to("cpu") | |
| self.controlnet.to("cpu") | |
| torch.cuda.empty_cache() | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ | |
| 0 | |
| ] | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |