penguins / app.py
nowave's picture
Upload 2 files
96a4277
raw
history blame
4.25 kB
import pickle
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import streamlit as st
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
st.title("Penguin Classifier")
st.write(
"""App uses 6 inputs to predict
the species of penguin using a model
built on the Palmer's Penguins dataset.
"""
)
# password 설정
password_guess = st.text_input("Input Password?")
if password_guess != "streamlit":
st.stop()
# updata csvfile
penguin_file = st.file_uploader("Upload your own data")
if penguin_file is None:
rf_pickle = open("models/rf_penguin.pickle", "rb")
map_pickle = open("models/class_penguin.pickle", "rb")
rfc = pickle.load(rf_pickle)
unique_penguin_mapping = pickle.load(map_pickle)
rf_pickle.close()
map_pickle.close()
penguin_df = pd.read_csv("penguins.csv")
else:
penguin_df = pd.read_csv(penguin_file)
penguin_df['sex'].fillna(penguin_df['sex'].mode()[0], inplace=True)
penguin_df = penguin_df.dropna()
output = penguin_df["species"]
features = penguin_df[
[
"island",
"bill_length_mm",
"bill_depth_mm",
"flipper_length_mm",
"body_mass_g",
"sex",
]
]
features = pd.get_dummies(features)
output, unique_penguin_mapping = pd.factorize(output)
x_train, x_test, y_train, y_test = train_test_split(features, output, test_size=0.8)
rfc = RandomForestClassifier(random_state=15)
rfc.fit(x_train.values, y_train)
y_pred = rfc.predict(x_test.values)
score = round(accuracy_score(y_pred, y_test), 2)
rf_pickle = open("models/rf_penguin.pickle", "wb")
pickle.dump(rfc, rf_pickle)
rf_pickle.close()
output_pickle = open("models/class_penguin.pickle", "wb")
pickle.dump(unique_penguin_mapping, output_pickle)
output_pickle.close()
st.write(
f"""Trained a Random Forest model on these data,
it has a score of {score}! """
)
# selectbox, button 만들기
with st.form("user_inputs"):
island = st.selectbox("Penguin Island", options=["Biscoe", "Dream", "Torgerson"])
sex = st.selectbox("Sex", options=["Female", "Male"])
bill_length = st.number_input("Bill Length (mm)", min_value=0)
bill_depth = st.number_input("Bill Depth (mm)", min_value=0)
flipper_length = st.number_input("Flipper Length (mm)", min_value=0)
body_mass = st.number_input("Body Mass (g)", min_value=0)
st.form_submit_button()
island_biscoe, island_dream, island_torgerson = 0, 0, 0
if island == "Biscoe":
island_biscoe = 1
elif island == "Dream":
island_dream = 1
elif island == "Torgerson":
island_torgerson = 1
sex_female, sex_male = 0, 0
if sex == "Female":
sex_female = 1
elif sex == "Male":
sex_male = 1
# Predction
new_prediction = rfc.predict(
[
[
bill_length,
bill_depth,
flipper_length,
body_mass,
island_biscoe,
island_dream,
island_torgerson,
sex_female,
sex_male,
]
]
)
st.subheader("Predicting Your Penguin's Species:")
prediction_species = unique_penguin_mapping[new_prediction][0]
st.write(f"# Prediction Species: **{prediction_species}")
st.write(
"""Machine learning
(Random Forest) model to predict the
species, the features used in this
prediction are ranked by relative
importance below."""
)
st.write(
"""Below are the histograms for each
continuous variable separated by penguin species.
The vertical line represents the inputted value."""
)
fig, ax = plt.subplots()
ax = sns.displot(x=penguin_df["bill_length_mm"], hue=penguin_df["species"])
plt.axvline(bill_length)
plt.title("Bill Length by Species")
st.pyplot(ax)
fig, ax = plt.subplots()
ax = sns.displot(x=penguin_df["bill_depth_mm"], hue=penguin_df["species"])
plt.axvline(bill_depth)
plt.title("Bill Depth by Species")
st.pyplot(ax)
fig, ax = plt.subplots()
ax = sns.displot(x=penguin_df["flipper_length_mm"], hue=penguin_df["species"])
plt.axvline(flipper_length)
plt.title("Flipper Length by Species")
st.pyplot(ax)