Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,86 +1,24 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
from fastapi import FastAPI, HTTPException
|
4 |
-
from pydantic import BaseModel
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
-
from threading import Thread
|
7 |
|
8 |
-
app
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
-
# Load model and tokenizer
|
14 |
-
device = "cpu" # Ensure it's on CPU
|
15 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
16 |
-
model = AutoModelForCausalLM.from_pretrained(
|
17 |
-
MODEL_ID,
|
18 |
-
torch_dtype=torch.float32, # Ensure compatibility with CPU
|
19 |
-
device_map="cpu", # Make sure model runs on CPU
|
20 |
-
ignore_mismatched_sizes=True
|
21 |
-
)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
message:
|
26 |
-
history: list = []
|
27 |
-
temperature: float = 0.3
|
28 |
-
max_new_tokens: int = 1024
|
29 |
-
top_p: float = 1.0
|
30 |
-
top_k: int = 20
|
31 |
-
penalty: float = 1.2
|
32 |
-
|
33 |
-
@app.post("/generate")
|
34 |
-
async def generate_text(request: RequestModel):
|
35 |
-
try:
|
36 |
-
# Prepare conversation
|
37 |
-
conversation = []
|
38 |
-
for prompt, answer in request.history:
|
39 |
-
conversation.extend([
|
40 |
-
{"role": "user", "content": prompt},
|
41 |
-
{"role": "assistant", "content": answer},
|
42 |
-
])
|
43 |
-
conversation.append({"role": "user", "content": request.message})
|
44 |
-
|
45 |
-
# Tokenize input
|
46 |
-
input_text = tokenizer.apply_chat_template(conversation, tokenize=False)
|
47 |
-
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
48 |
-
|
49 |
-
# Streaming setup
|
50 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
51 |
-
|
52 |
-
# Generation parameters
|
53 |
-
generate_kwargs = dict(
|
54 |
-
input_ids=inputs,
|
55 |
-
max_new_tokens=request.max_new_tokens,
|
56 |
-
do_sample=False if request.temperature == 0 else True,
|
57 |
-
top_p=request.top_p,
|
58 |
-
top_k=request.top_k,
|
59 |
-
temperature=request.temperature,
|
60 |
-
streamer=streamer,
|
61 |
-
repetition_penalty=request.penalty,
|
62 |
-
pad_token_id=tokenizer.pad_token_id
|
63 |
-
)
|
64 |
-
|
65 |
-
# Start model generation
|
66 |
-
with torch.no_grad():
|
67 |
-
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
68 |
-
thread.start()
|
69 |
-
|
70 |
-
# Stream output
|
71 |
-
buffer = ""
|
72 |
-
for new_text in streamer:
|
73 |
-
buffer += new_text
|
74 |
-
|
75 |
-
# Return response
|
76 |
-
return {"response": buffer}
|
77 |
|
78 |
-
|
79 |
-
raise HTTPException(status_code=500, detail=str(e))
|
80 |
|
81 |
-
# Root endpoint
|
82 |
-
@app.get("/")
|
83 |
-
def root():
|
84 |
-
return {"message": "Welcome to the Mistral-Nemo text generation API"}
|
85 |
|
|
|
|
|
|
|
|
|
86 |
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
## create a new FASTAPI app instance
|
5 |
+
app=FastAPI()
|
6 |
|
7 |
+
# Initialize the text generation pipeline
|
8 |
+
pipe = pipeline("text-generation", model="Qwen/Qwen2.5-1.5B-Instruct")
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
@app.get("/")
|
12 |
+
def home():
|
13 |
+
return {"message":"Hello World"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Define a function to handle the GET request at `/generate`
|
|
|
16 |
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
@app.get("/generate")
|
19 |
+
def generate(text:str):
|
20 |
+
## use the pipeline to generate text from given input text
|
21 |
+
output=pipe(text)
|
22 |
|
23 |
+
## return the generate text in Json reposne
|
24 |
+
return {"output":output[0]['generated_text']}
|