nouamanetazi's picture
nouamanetazi HF staff
add more examples
2d4dba1
raw
history blame
3.18 kB
import re
import glob
import pickle
import os
import torch
import numpy as np
from utils.audio import load_spectrograms
from utils.compute_args import compute_args
from utils.tokenize import tokenize, create_dict, sent_to_ix, cmumosei_2, cmumosei_7, pad_feature
from model_LA import Model_LA
import gradio as gr
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# load model
ckpts_path = 'ckpt'
model_name = "Model_LA_e"
# Listing sorted checkpoints
ckpts = sorted(glob.glob(os.path.join(ckpts_path, model_name,'best*')), reverse=True)
# Load original args
args = torch.load(ckpts[0], map_location=torch.device(device))['args']
args = compute_args(args)
pretrained_emb = np.load("train_glove.npy")
token_to_ix = pickle.load(open("token_to_ix.pkl", "rb"))
state_dict = torch.load(ckpts[0], map_location=torch.device(device))['state_dict']
net = Model_LA(args, len(token_to_ix), pretrained_emb).to(device)
net.load_state_dict(state_dict)
def inference(source_video, transcription):
# data preprocessing
# text
def clean(w):
return re.sub(
r"([.,'!?\"()*#:;])",
'',
w.lower()
).replace('-', ' ').replace('/', ' ')
s = [clean(w) for w in transcription.split() if clean(w) != '']
# Sound
_, mel, mag = load_spectrograms(source_video)
l_max_len = args.lang_seq_len
a_max_len = args.audio_seq_len
v_max_len = args.video_seq_len
L = sent_to_ix(s, token_to_ix, max_token=l_max_len)
A = pad_feature(mel, a_max_len)
V = pad_feature(mel, v_max_len)
# print shapes
print(f"Processed text shape from {len(s)} to {L.shape}")
print(f"Processed audio shape from {mel.shape} to {A.shape}")
print(f"Processed video shape from {mel.shape} to {V.shape}")
net.train(False)
x = np.expand_dims(L,axis=0)
y = np.expand_dims(A,axis=0)
z = np.expand_dims(V,axis=0)
x, y, z = torch.from_numpy(x).to(device), torch.from_numpy(y).to(device), torch.from_numpy(z).float().to(device)
pred = net(x, y, z).cpu().data.numpy()[0]
pred = np.exp(pred) / np.sum(np.exp(pred)) # softmax
label_to_ix = ['happy', 'sad', 'angry', 'fear', 'disgust', 'surprise']
result_dict = {label_to_ix[i]: float(pred[i]) for i in range(len(label_to_ix))}
return result_dict
title="Emotion Recognition"
description=""
examples = [
['examples/0h-zjBukYpk_2.mp4', "NOW IM NOT EVEN GONNA SUGAR COAT THIS THIS MOVIE FRUSTRATED ME TO SUCH AN EXTREME EXTENT THAT I WAS LOUDLY EXCLAIMING WHY AT THE END OF THE FILM"],
['examples/0h-zjBukYpk_19.mp4', "NOW OTHER PERFORMANCES ARE BORDERLINE"],
['examples/03bSnISJMiM_1.mp4', "IT WAS REALLY GOOD "],
['examples/03bSnISJMiM_5.mp4', "AND THEY SHOULDVE I GUESS "],
]
gr.Interface(inference,
inputs = [gr.inputs.Video(type="avi", source="upload"), "text"],
outputs=["label"],
title=title,
description=description,
examples=examples
).launch(debug=True)