Manoj Kumar
commited on
Commit
·
4c735b8
1
Parent(s):
d7b8d30
initial commit
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: red
|
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.11.0
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
python: 3.9
|
11 |
---
|
|
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.11.0
|
8 |
+
app_file: gpt_neo_db.py
|
9 |
pinned: false
|
10 |
python: 3.9
|
11 |
---
|
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Define the schema for the database
|
6 |
+
db_schema = {
|
7 |
+
"products": ["product_id", "name", "price", "description", "type"],
|
8 |
+
"orders": ["order_id", "product_id", "quantity", "order_date"],
|
9 |
+
"customers": ["customer_id", "name", "email", "phone_number"]
|
10 |
+
}
|
11 |
+
|
12 |
+
# Load the model and tokenizer
|
13 |
+
model_name = "EleutherAI/gpt-neox-20b" # You can also use "Llama-2-7b" or another model
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
|
16 |
+
|
17 |
+
def generate_sql_query(context, question):
|
18 |
+
"""
|
19 |
+
Generate an SQL query based on the question and context.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
context (str): Description of the database schema or table relationships.
|
23 |
+
question (str): User's natural language query.
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
str: Generated SQL query.
|
27 |
+
"""
|
28 |
+
# Prepare the prompt
|
29 |
+
prompt = f"""
|
30 |
+
Context: {context}
|
31 |
+
|
32 |
+
Question: {question}
|
33 |
+
|
34 |
+
Write an SQL query to address the question based on the context.
|
35 |
+
Query:
|
36 |
+
"""
|
37 |
+
# Tokenize input
|
38 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to("cuda" if torch.cuda.is_available() else "cpu")
|
39 |
+
|
40 |
+
# Generate SQL query
|
41 |
+
output = model.generate(inputs.input_ids, max_length=512, num_beams=5, early_stopping=True)
|
42 |
+
query = tokenizer.decode(output[0], skip_special_tokens=True)
|
43 |
+
|
44 |
+
# Extract query from the output
|
45 |
+
sql_query = query.split("Query:")[-1].strip()
|
46 |
+
return sql_query
|
47 |
+
|
48 |
+
# Schema as a context for the model
|
49 |
+
schema_description = json.dumps(db_schema, indent=4)
|
50 |
+
|
51 |
+
# Example interactive questions
|
52 |
+
print("Ask a question about the database schema.")
|
53 |
+
while True:
|
54 |
+
user_question = input("Question: ")
|
55 |
+
if user_question.lower() in ["exit", "quit"]:
|
56 |
+
print("Exiting...")
|
57 |
+
break
|
58 |
+
|
59 |
+
# Generate SQL query
|
60 |
+
sql_query = generate_sql_query(schema_description, user_question)
|
61 |
+
print(f"Generated SQL Query:\n{sql_query}\n")
|