Merge branch 'main' of https://huggingface.co/spaces/not-lain/gpu-utils
Browse files
    	
        README.md
    CHANGED
    
    | 
         @@ -4,9 +4,9 @@ emoji: 🏃 
     | 
|
| 4 | 
         
             
            colorFrom: red
         
     | 
| 5 | 
         
             
            colorTo: purple
         
     | 
| 6 | 
         
             
            sdk: gradio
         
     | 
| 7 | 
         
            -
            sdk_version: 5. 
     | 
| 8 | 
         
             
            app_file: app.py
         
     | 
| 9 | 
         
             
            pinned: false
         
     | 
| 10 | 
         
             
            ---
         
     | 
| 11 | 
         | 
| 12 | 
         
            -
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         
     | 
| 
         | 
|
| 4 | 
         
             
            colorFrom: red
         
     | 
| 5 | 
         
             
            colorTo: purple
         
     | 
| 6 | 
         
             
            sdk: gradio
         
     | 
| 7 | 
         
            +
            sdk_version: 5.14.0
         
     | 
| 8 | 
         
             
            app_file: app.py
         
     | 
| 9 | 
         
             
            pinned: false
         
     | 
| 10 | 
         
             
            ---
         
     | 
| 11 | 
         | 
| 12 | 
         
            +
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         
     | 
    	
        app.py
    CHANGED
    
    | 
         @@ -20,6 +20,12 @@ def float32_high_matmul_precision(): 
     | 
|
| 20 | 
         
             
                finally:
         
     | 
| 21 | 
         
             
                    torch.set_float32_matmul_precision("highest")
         
     | 
| 22 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 23 | 
         | 
| 24 | 
         
             
            pipe = FluxFillPipeline.from_pretrained(
         
     | 
| 25 | 
         
             
                "black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
         
     | 
| 
         @@ -135,15 +141,16 @@ def rmbg(image=None, url=None): 
     | 
|
| 135 | 
         | 
| 136 | 
         
             
            def mask_generation(image=None, d=None):
         
     | 
| 137 | 
         
             
                d = eval(d)  # convert this to dictionary
         
     | 
| 138 | 
         
            -
                 
     | 
| 139 | 
         
            -
             
     | 
| 140 | 
         
            -
             
     | 
| 141 | 
         
            -
             
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
                     
     | 
| 144 | 
         
            -
             
     | 
| 145 | 
         
            -
             
     | 
| 146 | 
         
            -
             
     | 
| 
         | 
|
| 147 | 
         
             
                sorted_ind = np.argsort(scores)[::-1]
         
     | 
| 148 | 
         
             
                masks = masks[sorted_ind]
         
     | 
| 149 | 
         
             
                scores = scores[sorted_ind]
         
     | 
| 
         @@ -165,7 +172,7 @@ def erase(image=None, mask=None): 
     | 
|
| 165 | 
         
             
                return simple_lama(image, mask)
         
     | 
| 166 | 
         | 
| 167 | 
         | 
| 168 | 
         
            -
            @spaces.GPU
         
     | 
| 169 | 
         
             
            def main(*args):
         
     | 
| 170 | 
         
             
                api_num = args[0]
         
     | 
| 171 | 
         
             
                args = args[1:]
         
     | 
| 
         | 
|
| 20 | 
         
             
                finally:
         
     | 
| 21 | 
         
             
                    torch.set_float32_matmul_precision("highest")
         
     | 
| 22 | 
         | 
| 23 | 
         
            +
            # use bfloat16 for the entire notebook
         
     | 
| 24 | 
         
            +
            torch.autocast("cuda", dtype=torch.bfloat16).__enter__()
         
     | 
| 25 | 
         
            +
            # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
         
     | 
| 26 | 
         
            +
            if torch.cuda.get_device_properties(0).major >= 8:
         
     | 
| 27 | 
         
            +
                torch.backends.cuda.matmul.allow_tf32 = True
         
     | 
| 28 | 
         
            +
                torch.backends.cudnn.allow_tf32 = True
         
     | 
| 29 | 
         | 
| 30 | 
         
             
            pipe = FluxFillPipeline.from_pretrained(
         
     | 
| 31 | 
         
             
                "black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
         
     | 
| 
         | 
|
| 141 | 
         | 
| 142 | 
         
             
            def mask_generation(image=None, d=None):
         
     | 
| 143 | 
         
             
                d = eval(d)  # convert this to dictionary
         
     | 
| 144 | 
         
            +
                with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
         
     | 
| 145 | 
         
            +
                    predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
         
     | 
| 146 | 
         
            +
                    predictor.set_image(image)
         
     | 
| 147 | 
         
            +
                    input_point = np.array(d["input_points"])
         
     | 
| 148 | 
         
            +
                    input_label = np.array(d["input_labels"])
         
     | 
| 149 | 
         
            +
                    masks, scores, logits = predictor.predict(
         
     | 
| 150 | 
         
            +
                        point_coords=input_point,
         
     | 
| 151 | 
         
            +
                        point_labels=input_label,
         
     | 
| 152 | 
         
            +
                        multimask_output=True,
         
     | 
| 153 | 
         
            +
                    )
         
     | 
| 154 | 
         
             
                sorted_ind = np.argsort(scores)[::-1]
         
     | 
| 155 | 
         
             
                masks = masks[sorted_ind]
         
     | 
| 156 | 
         
             
                scores = scores[sorted_ind]
         
     | 
| 
         | 
|
| 172 | 
         
             
                return simple_lama(image, mask)
         
     | 
| 173 | 
         | 
| 174 | 
         | 
| 175 | 
         
            +
            @spaces.GPU(duration=120)
         
     | 
| 176 | 
         
             
            def main(*args):
         
     | 
| 177 | 
         
             
                api_num = args[0]
         
     | 
| 178 | 
         
             
                args = args[1:]
         
     |