Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from train import AnimeSegmentation
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from loadimg import load_img
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
|
8 |
+
model = AnimeSegmentation.from_pretrained("skytnt/anime-seg")
|
9 |
+
|
10 |
+
device = "cuda"
|
11 |
+
model.eval()
|
12 |
+
model.to(device)
|
13 |
+
img_size = model._hub_mixin_config["img_size"]
|
14 |
+
|
15 |
+
|
16 |
+
def get_mask(model, input_img, use_amp=True, s=640):
|
17 |
+
input_img = (input_img / 255).astype(np.float32)
|
18 |
+
h, w = h0, w0 = input_img.shape[:-1]
|
19 |
+
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
|
20 |
+
ph, pw = s - h, s - w
|
21 |
+
img_input = np.zeros([s, s, 3], dtype=np.float32)
|
22 |
+
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(input_img, (w, h))
|
23 |
+
img_input = np.transpose(img_input, (2, 0, 1))
|
24 |
+
img_input = img_input[np.newaxis, :]
|
25 |
+
tmpImg = torch.from_numpy(img_input).type(torch.FloatTensor).to(model.device)
|
26 |
+
with torch.no_grad():
|
27 |
+
if use_amp:
|
28 |
+
with amp.autocast():
|
29 |
+
pred = model(tmpImg)
|
30 |
+
pred = pred.to(dtype=torch.float32)
|
31 |
+
else:
|
32 |
+
pred = model(tmpImg)
|
33 |
+
pred = pred.cpu().numpy()[0]
|
34 |
+
pred = np.transpose(pred, (1, 2, 0))
|
35 |
+
pred = pred[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w]
|
36 |
+
pred = cv2.resize(pred, (w0, h0))[:, :, np.newaxis]
|
37 |
+
return pred
|
38 |
+
|
39 |
+
|
40 |
+
def process(img):
|
41 |
+
path = load_img(img,output_type="str")
|
42 |
+
img = cv2.cvtColor(cv2.imread(path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
|
43 |
+
mask = get_mask(HF_model, img, use_amp= False, s=img_size)
|
44 |
+
img = mask * img
|
45 |
+
out = load_img(img)
|
46 |
+
return out
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
demo = gr.Interface(process,"image","image")
|
52 |
+
|
53 |
+
demo.launch(debug=True)
|