Spaces:
Sleeping
Sleeping
first commit
Browse files- README.md +1 -1
- app.py +108 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: RAG
|
3 |
-
emoji:
|
4 |
colorFrom: gray
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: RAG
|
3 |
+
emoji: πWπ
|
4 |
colorFrom: gray
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import PyPDF2
|
3 |
+
import pandas as pd
|
4 |
+
import warnings
|
5 |
+
import re
|
6 |
+
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer
|
7 |
+
from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer
|
8 |
+
import torch
|
9 |
+
import gradio as gr
|
10 |
+
from typing import Union
|
11 |
+
from datasets import Dataset
|
12 |
+
warnings.filterwarnings("ignore")
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
torch.set_grad_enabled(False)
|
17 |
+
ctx_encoder = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
|
18 |
+
ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
q_encoder = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
|
23 |
+
q_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
|
24 |
+
|
25 |
+
|
26 |
+
def process_pdfs(parent_dir: Union[str,list]):
|
27 |
+
""" processess the PDF files and returns a dataframe with the text of each page in a
|
28 |
+
different line""" # XD
|
29 |
+
# creating a pdf file object
|
30 |
+
df = pd.DataFrame(columns = ["title","text"])
|
31 |
+
if type(parent_dir) == str :
|
32 |
+
parent_dir = [parent_dir]
|
33 |
+
for file_path in parent_dir:
|
34 |
+
# creating a pdf file object
|
35 |
+
pdfFileObj = open(file_path, 'rb')
|
36 |
+
|
37 |
+
# creating a pdf reader object
|
38 |
+
pdfReader = PyPDF2.PdfReader(pdfFileObj)
|
39 |
+
# printing number of pages in pdf file
|
40 |
+
num_pages = len(pdfReader.pages)
|
41 |
+
for i in range(num_pages) :
|
42 |
+
pageObj = pdfReader.pages[i]
|
43 |
+
# extracting text from page
|
44 |
+
txt = pageObj.extract_text()
|
45 |
+
txt = txt.replace("\n","") # strip return to line
|
46 |
+
txt = txt.replace("\t","") # strip tabs
|
47 |
+
txt = re.sub(r" +"," ",txt) # strip extra space
|
48 |
+
# 512 is related to the positional encoding "facebook/dpr-ctx_encoder-single-nq-base" model
|
49 |
+
if len(txt) < 512 :
|
50 |
+
file_name = file_path.split("/")[-1]
|
51 |
+
new_data = {"title":f"{file_name}-page-{i}","text":txt}
|
52 |
+
df = df.append(new_data,ignore_index=True)
|
53 |
+
else :
|
54 |
+
while len(txt) > 512 :
|
55 |
+
new_data = {"title":f"{file_name}-pg{i}","text":txt[:512]}
|
56 |
+
df = df.append(new_data,ignore_index=True)
|
57 |
+
txt = txt[512:]
|
58 |
+
|
59 |
+
# closing the pdf file object
|
60 |
+
pdfFileObj.close()
|
61 |
+
return df
|
62 |
+
|
63 |
+
def process(example):
|
64 |
+
"""process the bathces of the dataset and returns the embeddings"""
|
65 |
+
tokens = ctx_tokenizer(example["text"], return_tensors="pt")
|
66 |
+
embed = ctx_encoder(**tokens)[0][0].numpy()
|
67 |
+
return {'embeddings': embed}
|
68 |
+
|
69 |
+
def process_dataset(df):
|
70 |
+
"""processess the dataframe and returns a dataset variable"""
|
71 |
+
ds = Dataset.from_pandas(df)
|
72 |
+
ds = ds.map(process)
|
73 |
+
ds.add_faiss_index(column='embeddings') # add faiss index
|
74 |
+
return ds
|
75 |
+
|
76 |
+
def search(query, ds, k=3):
|
77 |
+
"""searches the query in the dataset and returns the k most similar"""
|
78 |
+
tokens = q_tokenizer(query, return_tensors="pt")
|
79 |
+
query_embed = q_encoder(**tokens)[0][0].numpy()
|
80 |
+
scores, retrieved_examples = ds.get_nearest_examples("embeddings", query_embed, k=k)
|
81 |
+
out = f"""title : {retrieved_examples["title"][0]},\ncontent: {retrieved_examples["text"][0]}
|
82 |
+
similar resources: {retrieved_examples["title"]}
|
83 |
+
"""
|
84 |
+
return out
|
85 |
+
|
86 |
+
def predict(query,file_paths, k=3):
|
87 |
+
"""predicts the most similar files to the query"""
|
88 |
+
df = process_pdfs(file_paths)
|
89 |
+
ds = process_dataset(df)
|
90 |
+
return search(query,ds,k=k)
|
91 |
+
|
92 |
+
with gr.Blocks() as demo :
|
93 |
+
with gr.Column():
|
94 |
+
files = gr.Files(label="Upload PDFs",type="filepath",file_count="multiple")
|
95 |
+
query = gr.Text(label="query")
|
96 |
+
with gr.Accordion():
|
97 |
+
k = gr.Number(label="number of results",value=3)
|
98 |
+
button = gr.Button("search")
|
99 |
+
with gr.Column():
|
100 |
+
output = gr.Textbox(label="output")
|
101 |
+
button.click(predict, [query,files,k],outputs=output)
|
102 |
+
|
103 |
+
demo.launch()
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
datasets
|
2 |
+
PyPDF2
|
3 |
+
torch
|