Lirsen Myrtaj phope commited on
Commit
a87376f
·
1 Parent(s): 8a086b6

Upload correlation.py (#33)

Browse files

- Upload correlation.py (aaea341736fae4aa54ccf7c880733f4c9873b7da)


Co-authored-by: Peter <phope@users.noreply.huggingface.co>

Files changed (1) hide show
  1. correlation.py +31 -0
correlation.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import datetime as dt
4
+ import pandas_datareader as pdr
5
+
6
+ # Read in Stock csv data and convert to have each Ticker as a column.
7
+ df = pd.read_csv('us-shareprices-daily.csv', sep=';')
8
+ stocks = df.pivot(index="Date", columns="Ticker", values="Adj. Close")
9
+ logRet = np.log(stocks/stocks.shift())
10
+
11
+ # Calculate the Correlation Coefficient for all Stocks
12
+ stocksCorr = logRet.corr()
13
+
14
+ # Output to csv
15
+ stocksCorr.to_csv (r'correlation_matrix.csv', index = None, header=True)
16
+
17
+ # Enter path of SimFin Data to convert to format for Calculations
18
+ def convert_simFin(path):
19
+ df = pd.read_csv(path, sep=';')
20
+ stocks = df.pivot(index="Date", columns="Ticker", values="Adj. Close")
21
+ return stocks
22
+
23
+ # Calculate Log returns of the Formatted Stocks
24
+ def log_of_returns(stocks):
25
+ log_returns = np.log(stocks/stocks.shift())
26
+ return log_returns
27
+
28
+ # Enter Log returns of Stocks to Calculate the Correlation Matrix.
29
+ def correlation_matrix(lr):
30
+ return lr.corr()
31
+