import pandas as pd | |
import numpy as np | |
import datetime as dt | |
import pandas_datareader as pdr | |
# Read in Stock csv data and convert to have each Ticker as a column. | |
#df = pd.read_csv('us-shareprices-daily.csv', sep=';') | |
#stocks = df.pivot(index="Date", columns="Ticker", values="Adj. Close") | |
#logRet = np.log(stocks/stocks.shift()) | |
# Calculate the Correlation Coefficient for all Stocks | |
#stocksCorr = logRet.corr() | |
# Output to csv | |
#stocksCorr.to_csv (r'correlation_matrix.csv', index = None, header=True) | |
# Enter path of SimFin Data to convert to format for Calculations | |
def convert_simFin(path): | |
df = pd.read_csv(path, sep=';') | |
stocks = df.pivot(index="Date", columns="Ticker", values="Adj. Close") | |
return stocks | |
# Calculate Log returns of the Formatted Stocks | |
def log_of_returns(stocks): | |
log_returns = np.log(stocks/stocks.shift()) | |
return log_returns | |
# Enter Log returns of Stocks to Calculate the Correlation Matrix. | |
def correlation_matrix(lr): | |
return lr.corr() | |