aaromosshf2424
commited on
Commit
·
168dc64
1
Parent(s):
75d1e33
pulled solution from main
Browse files
app.py
CHANGED
@@ -11,6 +11,9 @@ from langchain_core.prompts import PromptTemplate
|
|
11 |
from langchain.schema.output_parser import StrOutputParser
|
12 |
from langchain.schema.runnable import RunnablePassthrough
|
13 |
from langchain.schema.runnable.config import RunnableConfig
|
|
|
|
|
|
|
14 |
|
15 |
# GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
|
16 |
# ---- ENV VARIABLES ---- #
|
@@ -37,8 +40,6 @@ HF_TOKEN = os.environ["HF_TOKEN"]
|
|
37 |
3. Load HuggingFace Embeddings (remember to use the URL we set above)
|
38 |
4. Index Files if they do not exist, otherwise load the vectorstore
|
39 |
"""
|
40 |
-
### 1. CREATE TEXT LOADER AND LOAD DOCUMENTS
|
41 |
-
### NOTE: PAY ATTENTION TO THE PATH THEY ARE IN.
|
42 |
document_loader = TextLoader("./data/paul_graham_essays.txt")
|
43 |
documents = document_loader.load()
|
44 |
|
@@ -51,25 +52,57 @@ hf_embeddings = HuggingFaceEndpointEmbeddings(
|
|
51 |
huggingfacehub_api_token=HF_TOKEN,
|
52 |
)
|
53 |
|
54 |
-
|
55 |
-
vectorstore
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
63 |
print("Indexing Files")
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
# -- AUGMENTED -- #
|
75 |
"""
|
|
|
11 |
from langchain.schema.output_parser import StrOutputParser
|
12 |
from langchain.schema.runnable import RunnablePassthrough
|
13 |
from langchain.schema.runnable.config import RunnableConfig
|
14 |
+
from tqdm.asyncio import tqdm_asyncio
|
15 |
+
import asyncio
|
16 |
+
from tqdm.asyncio import tqdm
|
17 |
|
18 |
# GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
|
19 |
# ---- ENV VARIABLES ---- #
|
|
|
40 |
3. Load HuggingFace Embeddings (remember to use the URL we set above)
|
41 |
4. Index Files if they do not exist, otherwise load the vectorstore
|
42 |
"""
|
|
|
|
|
43 |
document_loader = TextLoader("./data/paul_graham_essays.txt")
|
44 |
documents = document_loader.load()
|
45 |
|
|
|
52 |
huggingfacehub_api_token=HF_TOKEN,
|
53 |
)
|
54 |
|
55 |
+
async def add_documents_async(vectorstore, documents):
|
56 |
+
await vectorstore.aadd_documents(documents)
|
57 |
+
|
58 |
+
async def process_batch(vectorstore, batch, is_first_batch, pbar):
|
59 |
+
if is_first_batch:
|
60 |
+
result = await FAISS.afrom_documents(batch, hf_embeddings)
|
61 |
+
else:
|
62 |
+
await add_documents_async(vectorstore, batch)
|
63 |
+
result = vectorstore
|
64 |
+
pbar.update(len(batch))
|
65 |
+
return result
|
66 |
+
|
67 |
+
async def main():
|
68 |
print("Indexing Files")
|
69 |
+
|
70 |
+
vectorstore = None
|
71 |
+
batch_size = 32
|
72 |
+
|
73 |
+
batches = [split_documents[i:i+batch_size] for i in range(0, len(split_documents), batch_size)]
|
74 |
+
|
75 |
+
async def process_all_batches():
|
76 |
+
nonlocal vectorstore
|
77 |
+
tasks = []
|
78 |
+
pbars = []
|
79 |
+
|
80 |
+
for i, batch in enumerate(batches):
|
81 |
+
pbar = tqdm(total=len(batch), desc=f"Batch {i+1}/{len(batches)}", position=i)
|
82 |
+
pbars.append(pbar)
|
83 |
+
|
84 |
+
if i == 0:
|
85 |
+
vectorstore = await process_batch(None, batch, True, pbar)
|
86 |
+
else:
|
87 |
+
tasks.append(process_batch(vectorstore, batch, False, pbar))
|
88 |
+
|
89 |
+
if tasks:
|
90 |
+
await asyncio.gather(*tasks)
|
91 |
+
|
92 |
+
for pbar in pbars:
|
93 |
+
pbar.close()
|
94 |
+
|
95 |
+
await process_all_batches()
|
96 |
+
|
97 |
+
hf_retriever = vectorstore.as_retriever()
|
98 |
+
print("\nIndexing complete. Vectorstore is ready for use.")
|
99 |
+
return hf_retriever
|
100 |
+
|
101 |
+
async def run():
|
102 |
+
retriever = await main()
|
103 |
+
return retriever
|
104 |
+
|
105 |
+
hf_retriever = asyncio.run(run())
|
106 |
|
107 |
# -- AUGMENTED -- #
|
108 |
"""
|