northernpaws commited on
Commit
cf11ba9
·
verified ·
1 Parent(s): 5e67954

Remove offensive speech model

Browse files
Files changed (1) hide show
  1. app.py +0 -8
app.py CHANGED
@@ -6,31 +6,23 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
6
  hate_model = AutoModelForSequenceClassification.from_pretrained("KoalaAI/HateSpeechDetector")
7
  hate_tokenizer = AutoTokenizer.from_pretrained("KoalaAI/HateSpeechDetector")
8
 
9
- offensive_model = AutoModelForSequenceClassification.from_pretrained("KoalaAI/OffensiveSpeechDetector")
10
- offensive_tokenizer = AutoTokenizer.from_pretrained("KoalaAI/OffensiveSpeechDetector")
11
-
12
  # Define a function that takes an input text and returns the scores from the models
13
  def get_scores(text):
14
  # Tokenize and encode the input text
15
  hate_input = hate_tokenizer(text, return_tensors="pt")
16
- offensive_input = offensive_tokenizer(text, return_tensors="pt")
17
 
18
  # Get the logits from the models
19
  hate_logits = hate_model(**hate_input).logits
20
- offensive_logits = offensive_model(**offensive_input).logits
21
 
22
  # Apply softmax to get probabilities
23
  hate_probs = hate_logits.softmax(dim=1)
24
- offensive_probs = offensive_logits.softmax(dim=1)
25
 
26
  # Get the labels from the models
27
  hate_labels = hate_model.config.id2label
28
- offensive_labels = offensive_model.config.id2label
29
 
30
  # Format the output as a dictionary of scores
31
  output = {}
32
  output["Hate speech"] = {hate_labels[i]: round(p.item(), 4) for i, p in enumerate(hate_probs[0])}
33
- output["Offensive speech"] = {offensive_labels[i]: round(p.item(), 4) for i, p in enumerate(offensive_probs[0])}
34
 
35
  return output
36
 
 
6
  hate_model = AutoModelForSequenceClassification.from_pretrained("KoalaAI/HateSpeechDetector")
7
  hate_tokenizer = AutoTokenizer.from_pretrained("KoalaAI/HateSpeechDetector")
8
 
 
 
 
9
  # Define a function that takes an input text and returns the scores from the models
10
  def get_scores(text):
11
  # Tokenize and encode the input text
12
  hate_input = hate_tokenizer(text, return_tensors="pt")
 
13
 
14
  # Get the logits from the models
15
  hate_logits = hate_model(**hate_input).logits
 
16
 
17
  # Apply softmax to get probabilities
18
  hate_probs = hate_logits.softmax(dim=1)
 
19
 
20
  # Get the labels from the models
21
  hate_labels = hate_model.config.id2label
 
22
 
23
  # Format the output as a dictionary of scores
24
  output = {}
25
  output["Hate speech"] = {hate_labels[i]: round(p.item(), 4) for i, p in enumerate(hate_probs[0])}
 
26
 
27
  return output
28