Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import time | |
import joblib as jb | |
from sklearn.pipeline import Pipeline | |
import plotly.express as px | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from itertools import count | |
st.set_page_config( | |
page_title="Dashboard", | |
page_icon='H' | |
) | |
st.markdown(""" | |
<style> | |
div[data-testid="metric-container"] { | |
background-color: rgba(28, 131, 225, 0.1); | |
border: 1px solid rgba(28, 131, 225, 0.1); | |
padding: 5% 5% 5% 10%; | |
border-radius: 5px; | |
color: rgb(30, 103, 119); | |
overflow-wrap: break-word; | |
} | |
/* breakline for metric text */ | |
div[data-testid="metric-container"] > label[data-testid="stMetricLabel"] > div { | |
overflow-wrap: break-word; | |
white-space: break-spaces; | |
color: red; | |
} | |
</style> | |
""" | |
, unsafe_allow_html=True) | |
st.sidebar.success('Pages') | |
data = pd.read_csv('demonstrate_data.csv') | |
health = jb.load('predict.pkl') | |
prep = jb.load('prep.pkl') | |
anomaly = jb.load('anomaly.pkl') | |
anomaly_data = pd.read_csv('anomaly_data.csv') | |
features = ['Pressure (psi)', 'Temperature (°C)', 'Oil Flow (L/min)', 'Vibration (mm/s)','Oil Level (%)' ,'Tool RPM (rpm)' ,'Current (A)'] | |
health_ft = ['Temperature (°C)','Tool RPM (rpm)'] | |
pressure_cond = 'Normal' | |
temp_cond = 'Normal' | |
oil_cond = 'Normal' | |
rpm_cond = 'Normal' | |
with open ('style.css') as f: | |
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True) | |
def checks(i): | |
pressure_psi = data.loc[i,'Pressure (psi)'] | |
temperature_c = data.loc[i,'Temperature (°C)'] | |
vibration_mm_s = data.loc[i,'Vibration (mm/s)'] | |
oil_level_percent = data.loc[i,'Oil Level (%)'] | |
tool_rpm_rpm = data.loc[i,'Tool RPM (rpm)'] | |
global pressure_cond, temp_cond, oil_cond, rpm_cond,vib_cond | |
if pressure_psi > data['Pressure (psi)'].quantile(0.98): | |
pressure_cond = 'Warning! Too High' | |
elif pressure_psi < data['Pressure (psi)'].quantile(0.02): | |
pressure_cond = 'Warning! Too Low' | |
else: | |
pressure_cond = 'Normal' | |
if temperature_c > data['Temperature (°C)'].quantile(0.98): | |
temp_cond = 'Warning! Too High' | |
else: | |
temp_cond = 'Normal' | |
if oil_level_percent < data['Oil Level (%)'].quantile(0.02): | |
oil_cond = 'Warning! Too Low' | |
else: | |
oil_cond = 'Normal' | |
if tool_rpm_rpm > data['Tool RPM (rpm)'].quantile(0.98): | |
rpm_cond = 'Warning! Too High' | |
elif tool_rpm_rpm < data['Tool RPM (rpm)'].quantile(0.02): | |
rpm_cond = 'Warning! Too Low' | |
else: | |
rpm_cond = 'Normal' | |
if vibration_mm_s > data['Vibration (mm/s)'].quantile(0.98): | |
vib_cond = 'Warning! Too High' | |
elif vibration_mm_s < data['Vibration (mm/s)'].quantile(0.02): | |
vib_cond = 'Warning! Too Low' | |
else: | |
vib_cond = 'Normal' | |
return pressure_cond,temp_cond,oil_cond,rpm_cond | |
def predict_health(i): | |
k = pd.DataFrame(data.loc[i,health_ft]).T | |
feature_map = {'Temperature (°C)':'Process temperature','Tool RPM (rpm)':'Rotational speed'} | |
features = ['Process temperature','Rotational speed'] | |
k = k.rename(columns=feature_map) | |
k = prep.fit_transform(k) | |
pred = health.predict(k) | |
if pred != 0: | |
x = 'Likely' | |
else: | |
x = 'Unlikely' | |
return x | |
def predict_anomaly(i): | |
pred = anomaly.predict(pd.DataFrame(data.loc[i,features]).T) | |
if pred==-1: | |
x = 'Abnormal' | |
else: | |
x = 'Normal' | |
return x | |
st.title("Dashboard") | |
update_interval = 1 | |
update_interval = st.slider(min_value=1,max_value=5,value=None,label='Speed') | |
placeholder = st.empty() | |
run = [] | |
run = pd.DataFrame(run,columns=data.columns) | |
anom = data | |
for i in range(1,len(data)): | |
checks(i) | |
with placeholder.container(): | |
element1,element2,element3 = st.columns(3) | |
e4, e5, e6 = st.columns(3) | |
e7, e8 = st.columns(2) | |
e9, e10 = st.columns(2) | |
d1,d2= st.columns(2) | |
d3,d4= st.columns(2) | |
d5, machine_health= st.columns(2) | |
element1.metric(value=data.loc[i,'Pressure (psi)'],label='Pressure (psi)',delta=round((data.loc[i,'Pressure (psi)']-data.loc[i-1,'Pressure (psi)']))) | |
element2.metric(value=data.loc[i,'Temperature (°C)'],label='Temperature (°C)',delta=round((data.loc[i,'Temperature (°C)']-data.loc[i-1,'Temperature (°C)']))) | |
element3.metric(value=data.loc[i,'Oil Flow (L/min)'],label='Oil Flow (L/min)',delta=round((data.loc[i,'Oil Flow (L/min)']-data.loc[i-1,'Oil Flow (L/min)']))) | |
e4.metric(value=data.loc[i,'Vibration (mm/s)'],label='Vibration (mm/s)',delta=round((data.loc[i,'Vibration (mm/s)']-data.loc[i-1,'Vibration (mm/s)']))) | |
e5.metric(value=data.loc[i,'Power Status'],label='Power Status') | |
e6.metric(value=data.loc[i,'Oil Level (%)'],label='Oil Level (%)',delta=round((data.loc[i,'Oil Level (%)']-data.loc[i-1,'Oil Level (%)']))) | |
e7.metric(value=data.loc[i,'Tool RPM (rpm)'],label='Tool RPM (rpm)',delta=round((data.loc[i,'Tool RPM (rpm)']-data.loc[i-1,'Tool RPM (rpm)']))) | |
e8.metric(value=data.loc[i,'Current (A)'],label='Current (A)',delta=round((data.loc[i,'Current (A)']-data.loc[i-1,'Current (A)']))) | |
e9.metric(value=data.loc[i,'Machine Status'],label='Machine Status') | |
e10.metric(value=predict_anomaly(i),label='Anomaly') | |
d1.metric(label=f"Pressure Levels", value=pressure_cond) | |
d2.metric(label=f"Temperature Levels", value=temp_cond) | |
d3.metric(label=f"Oil Levels", value=oil_cond) | |
d4.metric(label=f"RPM Levels", value=rpm_cond) | |
d5.metric(label=f"Vibration Levels", value=vib_cond) | |
machine_health.metric(value=predict_health(i),label='Temperature/RPM Failure') | |
new_row = pd.Series(data.loc[i,data.columns]) | |
#un = run.append(new_row, ignore_index=True) | |
new_row = pd.DataFrame(data.loc[i,:]).T | |
run = pd.concat([run,new_row]) | |
fig_col1, fig_col2 = st.columns(2) | |
fig_col3, fig_col4 = st.columns(2) | |
fig_col5, fig_col6 = st.columns(2) | |
fig_col7 = st.empty() | |
fig_col8 = st.empty() | |
with fig_col1: | |
st.markdown("Pressure (psi)") | |
fig = px.line(data_frame=run, y = 'Pressure (psi)', x = run.index) | |
fig.update_layout(width=350,height=350) | |
st.write(fig) | |
with fig_col2: | |
st.markdown("Temperature (°C)") | |
fig = px.line(data_frame=run, y = 'Temperature (°C)', x = run.index) | |
fig.update_layout(width=350,height=350) | |
st.write(fig) | |
with fig_col3: | |
st.markdown("Oil Flow (L/min)") | |
fig = px.line(data_frame=run, y = 'Oil Flow (L/min)', x = run.index) | |
fig.update_layout(width=350,height=350) | |
st.write(fig) | |
with fig_col4: | |
st.markdown("Tool RPM (rpm)") | |
fig = px.line(data_frame=run, y = 'Tool RPM (rpm)', x = run.index) | |
fig.update_layout(width=350,height=350) | |
st.write(fig) | |
with fig_col5: | |
st.markdown("Vibration (mm/s)") | |
fig = px.line(data_frame=run, y = 'Vibration (mm/s)', x = run.index) | |
fig.update_layout(width=350,height=350) | |
st.write(fig) | |
with fig_col6: | |
st.markdown("Oil Level (%)") | |
fig = px.line(data_frame=run, y = 'Oil Level (%)', x = run.index) | |
fig.update_layout(width=350,height=350) | |
st.write(fig) | |
with fig_col7: | |
st.markdown("Current (A)") | |
fig = px.line(data_frame=run, y = 'Current (A)', x = run.index) | |
fig.update_layout(width=350,height=350) | |
st.write(fig) | |
with fig_col8: | |
df = run | |
fig = px.scatter_matrix(data_frame=anomaly_data) | |
fig.update_layout(width=350,height=350) | |
st.write(fig) | |
time.sleep(1/update_interval) | |