JollypopChannel
since we don't use the alert bar to inform the user that the first choice is the correct answer anymore and instead, use it as an error alert, we have to code it to show on the first choice that it's different from the other choices and indeed is the correct one
ee8ff1a
# Importing libraries
from nltk.corpus import wordnet
import nltk
import transformers
import pandas as pd
import json
import random
import torch
device='cpu'
# Declare the (trained) model that will be used
classifier = transformers.pipeline("zero-shot-classification", model="simple_trained_wsd_pipeline", device=device)
import spacy
# Part Of Speech tagging (POS tagging)
nlp = spacy.load("en_core_web_sm")
print('successfully download model')
def model(passage, level):
# pip install spacy
# pip install transformers
# pip install torch
# pip install en_core_web_sm
# python -m spacy download en_core_web_sm
# pip install spacy-download
# pip install nltk
nltk.download('wordnet')
nltk.download('omw-1.4')
# Passing file directories into variables
# text_input = "./text_input.txt"
cefr_vocab = "cefr-vocab.csv"
# Create and open the text file
# with open(text_input, "a") as file:
# file.write(".") # Add a full stop at the end to make sure there is a full stop at the end of the text for the model to understand where to stop the sentence
# Ask the user for the CEFR level
# while True:
# cefr_level = input("Which CEFR level you want to test?: ").upper()
# if "A1" in cefr_level or "A2" in cefr_level or "B1" in cefr_level or "B2" in cefr_level or "C1" in cefr_level or "C2" in cefr_level:
# break
# else:
# continue
cefr_level = level
# Read from the input file
# with open(text_input, "r") as file:
# txt = str(file.readlines()).replace("[", "").replace("'", "").replace("]", "")
txt = passage + "."
if "." in txt:
txt = (txt.split("."))
else:
txt = txt
text_dict = {}
for n in txt:
n = n.strip()
ex1 = nlp(n)
for word in ex1:
sentence_question_tag = n.replace(word.text, f"[{word.text}]")
text_dict[f"{word.lemma_} = {sentence_question_tag}"] = word.pos_
# Collect the tagging results (filter in just NOUN, PROPN, VERB, ADJ, or ADV only)
collector = {}
for key, value in text_dict.items():
if "NOUN" in value or "VERB" in value or "ADJ" in value or "ADV" in value:
collector[key] = value
# Collect the CEFR level of the words collected before
reference = pd.read_csv(cefr_vocab)
matching = {}
for row_idx in range(reference.shape[0]):
row = reference.iloc[row_idx]
key = f"{row.headword}, {row.pos}"
matching[key] = row.CEFR
# Convert pos of the word into all lowercase to match another data set with CEFR level
for key1, value1 in collector.items():
if value1 == "NOUN":
collector[key1] = "noun"
if value1 == "VERB":
collector[key1] = "verb"
if value1 == "ADJ":
collector[key1] = "adjective"
if value1 == "ADV":
collector[key1] = "adverb"
# Matching 2 datasets together by the word and the pos
ready2filter = {}
for key, value in matching.items():
first_key, second_key = key.split(", ")
for key2, value2 in collector.items():
key2 = key2.split(" = ")
if first_key == key2[0].lower():
if second_key == value2:
ready2filter[f"{key} = {key2[1]}"] = value
# Filter in just the vocab that has the selected CEFR level that the user provided at the beginning
filtered0 = {}
for key, value in ready2filter.items():
if cefr_level == "ALL":
filtered0[key] = value
else:
if value == cefr_level:
filtered0[key] = value
# Rearrange the Python dictionary structure
filtered = {}
for key, value in filtered0.items():
key_parts = key.split(', ')
new_key = key_parts[0]
new_value = key_parts[1]
filtered[new_key] = new_value
# Grab the definition of each vocab from the NLTK wordnet English dictionary
def_filtered = {}
for key3, value3 in filtered.items():
syns = wordnet.synsets(key3)
partofspeech, context = value3.split(" = ")
def_filtered[f"{key3} = {context}"] = []
# pos conversion
if partofspeech == "noun":
partofspeech = "n"
if partofspeech == "verb":
partofspeech = "v"
if partofspeech == "adjective":
partofspeech = "s"
if partofspeech == "adverb":
partofspeech = "r"
# print("def_filtered 0:", def_filtered)
# Adding the definitions into the Python dictionary, def_filtered (syns variable does the job of finding the relevant word aka synonyms)
for s in syns:
# print('s:', s)
# print("syns:", syns)
def_filtered[f"{key3} = {context}"].append(s.definition())
# print("def_filtered 1:", def_filtered)
# Use Nvidia CUDA core if available
# if torch.cuda.is_available():
# device=0
# else:
# Process Python dictionary, def_filtereddic
correct_def = {}
for key4, value4 in def_filtered.items():
vocab, context = key4.split(" = ")
sequence_to_classify = context
candidate_labels = value4
# correct_def[key4] = []
correct_def_list = []
temp_def = []
hypothesis_template = 'The meaning of [' + vocab + '] is {}.'
output = classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template)
# Process the score of each definition and add it to the Python dictionary, correct_def
for label, score in zip(output['labels'], output['scores']):
temp_def.append(label)
# print(temp_def)
for first in range(len(temp_def)):
if first == 0:
val = f">> {temp_def[first]}"
else:
val = f"{temp_def[first]}"
correct_def_list.append(val)
print(type(key4), type(correct_def_list))
correct_def[key4] = correct_def_list
# correct_def[key4].append(f"{label}")
return correct_def
# with open(T2E_exam, "r") as file:
# exam = file.readlines()
# print(exam)
# return(exam)
# passage = "Computer is good"
# level = "A1"
# print(model(passage, level))