|
import torch |
|
import torch.nn as nn |
|
import torchvision.models.detection.backbone_utils as backbone_utils |
|
import torchvision.models._utils as _utils |
|
import torch.nn.functional as F |
|
from collections import OrderedDict |
|
|
|
from facemodels.net import MobileNetV1 as MobileNetV1 |
|
from facemodels.net import FPN as FPN |
|
from facemodels.net import SSH as SSH |
|
|
|
|
|
|
|
class ClassHead(nn.Module): |
|
def __init__(self,inchannels=512,num_anchors=3): |
|
super(ClassHead,self).__init__() |
|
self.num_anchors = num_anchors |
|
self.conv1x1 = nn.Conv2d(inchannels,self.num_anchors*2,kernel_size=(1,1),stride=1,padding=0) |
|
|
|
def forward(self,x): |
|
out = self.conv1x1(x) |
|
out = out.permute(0,2,3,1).contiguous() |
|
|
|
return out.view(out.shape[0], -1, 2) |
|
|
|
class BboxHead(nn.Module): |
|
def __init__(self,inchannels=512,num_anchors=3): |
|
super(BboxHead,self).__init__() |
|
self.conv1x1 = nn.Conv2d(inchannels,num_anchors*4,kernel_size=(1,1),stride=1,padding=0) |
|
|
|
def forward(self,x): |
|
out = self.conv1x1(x) |
|
out = out.permute(0,2,3,1).contiguous() |
|
|
|
return out.view(out.shape[0], -1, 4) |
|
|
|
class LandmarkHead(nn.Module): |
|
def __init__(self,inchannels=512,num_anchors=3): |
|
super(LandmarkHead,self).__init__() |
|
self.conv1x1 = nn.Conv2d(inchannels,num_anchors*10,kernel_size=(1,1),stride=1,padding=0) |
|
|
|
def forward(self,x): |
|
out = self.conv1x1(x) |
|
out = out.permute(0,2,3,1).contiguous() |
|
|
|
return out.view(out.shape[0], -1, 10) |
|
|
|
class RetinaFace(nn.Module): |
|
def __init__(self, cfg = None, phase = 'train'): |
|
""" |
|
:param cfg: Network related settings. |
|
:param phase: train or test. |
|
""" |
|
super(RetinaFace,self).__init__() |
|
self.phase = phase |
|
backbone = None |
|
if cfg['name'] == 'mobilenet0.25': |
|
backbone = MobileNetV1() |
|
if cfg['pretrain']: |
|
checkpoint = torch.load("./weights/mobilenetV1X0.25_pretrain.tar", map_location=torch.device('cpu')) |
|
from collections import OrderedDict |
|
new_state_dict = OrderedDict() |
|
for k, v in checkpoint['state_dict'].items(): |
|
name = k[7:] |
|
new_state_dict[name] = v |
|
|
|
backbone.load_state_dict(new_state_dict) |
|
elif cfg['name'] == 'Resnet50': |
|
import torchvision.models as models |
|
backbone = models.resnet50(pretrained=cfg['pretrain']) |
|
|
|
self.body = _utils.IntermediateLayerGetter(backbone, cfg['return_layers']) |
|
in_channels_stage2 = cfg['in_channel'] |
|
in_channels_list = [ |
|
in_channels_stage2 * 2, |
|
in_channels_stage2 * 4, |
|
in_channels_stage2 * 8, |
|
] |
|
out_channels = cfg['out_channel'] |
|
self.fpn = FPN(in_channels_list,out_channels) |
|
self.ssh1 = SSH(out_channels, out_channels) |
|
self.ssh2 = SSH(out_channels, out_channels) |
|
self.ssh3 = SSH(out_channels, out_channels) |
|
|
|
self.ClassHead = self._make_class_head(fpn_num=3, inchannels=cfg['out_channel']) |
|
self.BboxHead = self._make_bbox_head(fpn_num=3, inchannels=cfg['out_channel']) |
|
self.LandmarkHead = self._make_landmark_head(fpn_num=3, inchannels=cfg['out_channel']) |
|
|
|
def _make_class_head(self,fpn_num=3,inchannels=64,anchor_num=2): |
|
classhead = nn.ModuleList() |
|
for i in range(fpn_num): |
|
classhead.append(ClassHead(inchannels,anchor_num)) |
|
return classhead |
|
|
|
def _make_bbox_head(self,fpn_num=3,inchannels=64,anchor_num=2): |
|
bboxhead = nn.ModuleList() |
|
for i in range(fpn_num): |
|
bboxhead.append(BboxHead(inchannels,anchor_num)) |
|
return bboxhead |
|
|
|
def _make_landmark_head(self,fpn_num=3,inchannels=64,anchor_num=2): |
|
landmarkhead = nn.ModuleList() |
|
for i in range(fpn_num): |
|
landmarkhead.append(LandmarkHead(inchannels,anchor_num)) |
|
return landmarkhead |
|
|
|
def forward(self,inputs): |
|
out = self.body(inputs) |
|
|
|
|
|
fpn = self.fpn(out) |
|
|
|
|
|
feature1 = self.ssh1(fpn[0]) |
|
feature2 = self.ssh2(fpn[1]) |
|
feature3 = self.ssh3(fpn[2]) |
|
features = [feature1, feature2, feature3] |
|
|
|
bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1) |
|
classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)],dim=1) |
|
ldm_regressions = torch.cat([self.LandmarkHead[i](feature) for i, feature in enumerate(features)], dim=1) |
|
|
|
if self.phase == 'train': |
|
output = (bbox_regressions, classifications, ldm_regressions) |
|
else: |
|
output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions) |
|
return output |