Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -201,79 +201,86 @@ def main_fun(image_pil, x_units, y_units, text_prompt):
|
|
201 |
output = draw_image(image_pil, masks, boxes, alpha=0.4)
|
202 |
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
#
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
#
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
#
|
229 |
-
#
|
230 |
-
#
|
231 |
-
#
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
#
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
#
|
249 |
|
250 |
return output
|
251 |
|
252 |
import gradio as gr
|
253 |
|
254 |
-
with gr.Blocks() as demo:
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
# image_pil, x_units, y_units, text_prompt
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
# negative_prompt = gr.Textbox(lines=1, label="Negative Prompt")
|
264 |
-
# width = gr.Dropdown(choices=number_choices, value=704, label="Width")
|
265 |
-
# height = gr.Dropdown(choices=number_choicess, value=408, label="Height")
|
266 |
-
|
267 |
-
|
268 |
-
# seed = gr.Textbox(label="Seed (Leave empty for random seed)")
|
269 |
-
|
270 |
-
|
271 |
-
# generate = gr.Button("Generate")
|
272 |
-
# output_seed = gr.Textbox(label="Current Seed")
|
273 |
-
|
274 |
-
|
275 |
|
276 |
-
# generate.click(fn=main_fun, inputs=[image_pil, x_units, y_units, text_prompt], outputs=[output_image])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
# Launch the Gradio UI
|
279 |
gr.Interface(fn=main_fun, inputs=[image_pil, x_units, y_units, text_prompt], outputs=[output]).launch(share=True, debug=True)
|
|
|
201 |
output = draw_image(image_pil, masks, boxes, alpha=0.4)
|
202 |
|
203 |
|
204 |
+
'''Get masked object and background as two separate images'''
|
205 |
+
mask = np.expand_dims(masks[0], axis=-1)
|
206 |
+
masked_object = image_pil * mask
|
207 |
+
background = image_pil * ~mask
|
208 |
+
|
209 |
+
|
210 |
+
'''Shifts image by x_units and y_units'''
|
211 |
+
M = np.float32([[1, 0, x_units], [0, 1, y_units]])
|
212 |
+
shifted_image = cv2.warpAffine(masked_object, M, (masked_object.shape[1] , masked_object.shape[0] ), borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0))
|
213 |
+
masked_shifted_image = np.where(shifted_image[:, :, 0] != 0, True, False)
|
214 |
+
|
215 |
+
'''Load stable diffuser model at checkpoint finetuned for inpainting task'''
|
216 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
217 |
+
# "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
218 |
+
"stabilityai/stable-diffusion-2-inpainting",torch_dtype=torch.float16)
|
219 |
+
pipe.to(CFG.device)
|
220 |
+
|
221 |
+
|
222 |
+
# With Dilation
|
223 |
+
structuring_element = np.ones((15, 15, 1), dtype=bool)
|
224 |
+
extrapolated_mask = binary_dilation(mask, structure=structuring_element)
|
225 |
+
mask_as_uint8 = extrapolated_mask.astype(np.uint8) * 255
|
226 |
+
pil_mask = Image.fromarray(mask_as_uint8.squeeze(), mode='L').resize((1024, 1024))
|
227 |
+
|
228 |
+
# # Without Dilation
|
229 |
+
# pil_background = Image.fromarray(background)
|
230 |
+
# mask_as_uint8 = mask.astype(np.uint8) * 255
|
231 |
+
# pil_mask = Image.fromarray(mask_as_uint8.squeeze(), mode='L')
|
232 |
+
|
233 |
+
'''Do inpainting on masked locations of original image'''
|
234 |
+
prompt = 'fill as per background and neighborhood'
|
235 |
+
inpainted_image = pipe(prompt=prompt, image=image_pil, mask_image=pil_mask).images[0]
|
236 |
+
# inpainted_image
|
237 |
+
|
238 |
+
'''Get composite of shifted object and background inpainted imaage'''
|
239 |
+
pil_shifted_image = Image.fromarray(shifted_image).resize(inpainted_image.size)
|
240 |
+
np_shifted_image = np.array(pil_shifted_image)
|
241 |
+
masked_shifted_image = np.where(np_shifted_image[:, :, 0] != 0, True, False)
|
242 |
+
masked_shifted_image = np.expand_dims(masked_shifted_image, axis=-1)
|
243 |
+
inpainted_shifted = np.array(inpainted_image) * ~masked_shifted_image
|
244 |
+
|
245 |
+
shifted_image = cv2.resize(shifted_image, inpainted_image.size)
|
246 |
+
output = inpainted_shifted + shifted_image
|
247 |
+
output = Image.fromarray(output)
|
248 |
+
# visualize_results(image_pil, output, 'shifted')
|
249 |
|
250 |
return output
|
251 |
|
252 |
import gradio as gr
|
253 |
|
254 |
+
# with gr.Blocks() as demo:
|
255 |
+
# gr.Markdown("Segmentation and shift")
|
256 |
+
# with gr.Tab("Txt2Img"):
|
257 |
+
# with gr.Row():
|
258 |
+
# with gr.Column(scale=1):
|
259 |
+
# # image_pil, x_units, y_units, text_prompt
|
260 |
+
|
261 |
+
# text_prompt = gr.Textbox(lines=1, label="Prompt")
|
262 |
+
# image_pil = gr.Image(type="filepath", label='Image')
|
263 |
+
# # negative_prompt = gr.Textbox(lines=1, label="Negative Prompt")
|
264 |
+
# # width = gr.Dropdown(choices=number_choices, value=704, label="Width")
|
265 |
+
# # height = gr.Dropdown(choices=number_choicess, value=408, label="Height")
|
266 |
+
# x_units = gr.Slider(minimum=50, maximum=300, step=1, value=10, label="x_units")
|
267 |
+
# y_units = gr.Slider(minimum=30, maximum=300, step=0.1, value=5, label="y_units")
|
268 |
+
# # seed = gr.Textbox(label="Seed (Leave empty for random seed)")
|
269 |
+
# with gr.Column(scale=2):
|
270 |
+
# output = gr.Image(type="pil", label="Output Image")
|
271 |
+
# # generate = gr.Button("Generate")
|
272 |
+
# # output_seed = gr.Textbox(label="Current Seed")
|
273 |
+
|
274 |
+
# # Create the txt2img function
|
275 |
|
276 |
+
# # generate.click(fn=main_fun, inputs=[image_pil, x_units, y_units, text_prompt], outputs=[output_image])
|
277 |
+
|
278 |
+
x_units = gr.Slider(minimum=50, maximum=300, step=1, value=10, label="x_units")
|
279 |
+
y_units = gr.Slider(minimum=30, maximum=300, step=0.1, value=5, label="y_units")
|
280 |
+
text_prompt = gr.Textbox(lines=1, label="Prompt")
|
281 |
+
image_pil = gr.components.Image(type="filepath", label="Input Image")
|
282 |
+
output = gr.components.Image(type="numpy", label="Output Image")
|
283 |
+
]
|
284 |
|
285 |
# Launch the Gradio UI
|
286 |
gr.Interface(fn=main_fun, inputs=[image_pil, x_units, y_units, text_prompt], outputs=[output]).launch(share=True, debug=True)
|