|
import click |
|
import subprocess, traceback, json |
|
import os, sys |
|
import random, appdirs |
|
from datetime import datetime |
|
from dotenv import load_dotenv |
|
import operator |
|
sys.path.append(os.getcwd()) |
|
|
|
config_filename = "litellm.secrets" |
|
|
|
config_dir = appdirs.user_config_dir("litellm") |
|
user_config_path = os.getenv("LITELLM_CONFIG_PATH", os.path.join(config_dir, config_filename)) |
|
|
|
load_dotenv() |
|
from importlib import resources |
|
import shutil |
|
telemetry = None |
|
|
|
def run_ollama_serve(): |
|
try: |
|
command = ['ollama', 'serve'] |
|
|
|
with open(os.devnull, 'w') as devnull: |
|
process = subprocess.Popen(command, stdout=devnull, stderr=devnull) |
|
except Exception as e: |
|
print(f""" |
|
LiteLLM Warning: proxy started with `ollama` model\n`ollama serve` failed with Exception{e}. \nEnsure you run `ollama serve` |
|
""") |
|
|
|
def clone_subfolder(repo_url, subfolder, destination): |
|
|
|
repo_name = repo_url.split('/')[-1] |
|
repo_master = os.path.join(destination, "repo_master") |
|
subprocess.run(['git', 'clone', repo_url, repo_master]) |
|
|
|
|
|
subfolder_path = os.path.join(repo_master, subfolder) |
|
|
|
|
|
for file_name in os.listdir(subfolder_path): |
|
source = os.path.join(subfolder_path, file_name) |
|
if os.path.isfile(source): |
|
shutil.copy(source, destination) |
|
else: |
|
dest_path = os.path.join(destination, file_name) |
|
shutil.copytree(source, dest_path) |
|
|
|
|
|
subprocess.run(['rm', '-rf', os.path.join(destination, "repo_master")]) |
|
feature_telemetry(feature="create-proxy") |
|
|
|
def is_port_in_use(port): |
|
import socket |
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: |
|
return s.connect_ex(('localhost', port)) == 0 |
|
|
|
@click.command() |
|
@click.option('--host', default='0.0.0.0', help='Host for the server to listen on.') |
|
@click.option('--port', default=8000, help='Port to bind the server to.') |
|
@click.option('--num_workers', default=1, help='Number of uvicorn workers to spin up') |
|
@click.option('--api_base', default=None, help='API base URL.') |
|
@click.option('--api_version', default="2023-07-01-preview", help='For azure - pass in the api version.') |
|
@click.option('--model', '-m', default=None, help='The model name to pass to litellm expects') |
|
@click.option('--alias', default=None, help='The alias for the model - use this to give a litellm model name (e.g. "huggingface/codellama/CodeLlama-7b-Instruct-hf") a more user-friendly name ("codellama")') |
|
@click.option('--add_key', default=None, help='The model name to pass to litellm expects') |
|
@click.option('--headers', default=None, help='headers for the API call') |
|
@click.option('--save', is_flag=True, type=bool, help='Save the model-specific config') |
|
@click.option('--debug', default=False, is_flag=True, type=bool, help='To debug the input') |
|
@click.option('--use_queue', default=False, is_flag=True, type=bool, help='To use celery workers for async endpoints') |
|
@click.option('--temperature', default=None, type=float, help='Set temperature for the model') |
|
@click.option('--max_tokens', default=None, type=int, help='Set max tokens for the model') |
|
@click.option('--request_timeout', default=600, type=int, help='Set timeout in seconds for completion calls') |
|
@click.option('--drop_params', is_flag=True, help='Drop any unmapped params') |
|
@click.option('--add_function_to_prompt', is_flag=True, help='If function passed but unsupported, pass it as prompt') |
|
@click.option('--config', '-c', default=None, help='Configure Litellm') |
|
@click.option('--file', '-f', help='Path to config file') |
|
@click.option('--max_budget', default=None, type=float, help='Set max budget for API calls - works for hosted models like OpenAI, TogetherAI, Anthropic, etc.`') |
|
@click.option('--telemetry', default=True, type=bool, help='Helps us know if people are using this feature. Turn this off by doing `--telemetry False`') |
|
@click.option('--logs', flag_value=False, type=int, help='Gets the "n" most recent logs. By default gets most recent log.') |
|
@click.option('--health', flag_value=True, help='Make a chat/completions request to all llms in config.yaml') |
|
@click.option('--test', flag_value=True, help='proxy chat completions url to make a test request to') |
|
@click.option('--test_async', default=False, is_flag=True, help='Calls async endpoints /queue/requests and /queue/response') |
|
@click.option('--num_requests', default=10, type=int, help='Number of requests to hit async endpoint with') |
|
@click.option('--local', is_flag=True, default=False, help='for local debugging') |
|
def run_server(host, port, api_base, api_version, model, alias, add_key, headers, save, debug, temperature, max_tokens, request_timeout, drop_params, add_function_to_prompt, config, file, max_budget, telemetry, logs, test, local, num_workers, test_async, num_requests, use_queue, health): |
|
global feature_telemetry |
|
args = locals() |
|
if local: |
|
from proxy_server import app, save_worker_config, usage_telemetry |
|
else: |
|
try: |
|
from .proxy_server import app, save_worker_config, usage_telemetry |
|
except ImportError as e: |
|
from proxy_server import app, save_worker_config, usage_telemetry |
|
feature_telemetry = usage_telemetry |
|
if logs is not None: |
|
if logs == 0: |
|
logs = 1 |
|
try: |
|
with open('api_log.json') as f: |
|
data = json.load(f) |
|
|
|
|
|
log_times = {datetime.strptime(k, "%Y%m%d%H%M%S%f"): v for k, v in data.items()} |
|
|
|
|
|
sorted_times = sorted(log_times.items(), key=operator.itemgetter(0), reverse=True) |
|
|
|
|
|
recent_logs = {k.strftime("%Y%m%d%H%M%S%f"): v for k, v in sorted_times[:logs]} |
|
|
|
print(json.dumps(recent_logs, indent=4)) |
|
except: |
|
print("LiteLLM: No logs saved!") |
|
return |
|
if model and "ollama" in model: |
|
run_ollama_serve() |
|
if test_async is True: |
|
import requests, concurrent, time |
|
api_base = f"http://{host}:{port}" |
|
|
|
def _make_openai_completion(): |
|
data = { |
|
"model": "gpt-3.5-turbo", |
|
"messages": [{"role": "user", "content": "Write a short poem about the moon"}] |
|
} |
|
|
|
response = requests.post("http://0.0.0.0:8000/queue/request", json=data) |
|
|
|
response = response.json() |
|
|
|
while True: |
|
try: |
|
url = response["url"] |
|
polling_url = f"{api_base}{url}" |
|
polling_response = requests.get(polling_url) |
|
polling_response = polling_response.json() |
|
print("\n RESPONSE FROM POLLING JOB", polling_response) |
|
status = polling_response["status"] |
|
if status == "finished": |
|
llm_response = polling_response["result"] |
|
break |
|
print(f"POLLING JOB{polling_url}\nSTATUS: {status}, \n Response {polling_response}") |
|
time.sleep(0.5) |
|
except Exception as e: |
|
print("got exception in polling", e) |
|
break |
|
|
|
|
|
concurrent_calls = num_requests |
|
|
|
|
|
futures = [] |
|
start_time = time.time() |
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_calls) as executor: |
|
for _ in range(concurrent_calls): |
|
futures.append(executor.submit(_make_openai_completion)) |
|
|
|
|
|
concurrent.futures.wait(futures) |
|
|
|
|
|
successful_calls = 0 |
|
failed_calls = 0 |
|
|
|
for future in futures: |
|
if future.done(): |
|
if future.result() is not None: |
|
successful_calls += 1 |
|
else: |
|
failed_calls += 1 |
|
end_time = time.time() |
|
print(f"Elapsed Time: {end_time-start_time}") |
|
print(f"Load test Summary:") |
|
print(f"Total Requests: {concurrent_calls}") |
|
print(f"Successful Calls: {successful_calls}") |
|
print(f"Failed Calls: {failed_calls}") |
|
return |
|
if health != False: |
|
import requests |
|
print("\nLiteLLM: Health Testing models in config") |
|
response = requests.get(url=f"http://{host}:{port}/health") |
|
print(json.dumps(response.json(), indent=4)) |
|
return |
|
if test != False: |
|
click.echo('\nLiteLLM: Making a test ChatCompletions request to your proxy') |
|
import openai |
|
if test == True: |
|
api_base = f"http://{host}:{port}" |
|
else: |
|
api_base = test |
|
client = openai.OpenAI( |
|
api_key="My API Key", |
|
base_url=api_base |
|
) |
|
|
|
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [ |
|
{ |
|
"role": "user", |
|
"content": "this is a test request, write a short poem" |
|
} |
|
], max_tokens=256) |
|
click.echo(f'\nLiteLLM: response from proxy {response}') |
|
|
|
print("\n Making streaming request to proxy") |
|
|
|
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [ |
|
{ |
|
"role": "user", |
|
"content": "this is a test request, write a short poem" |
|
} |
|
], |
|
stream=True, |
|
) |
|
for chunk in response: |
|
click.echo(f'LiteLLM: streaming response from proxy {chunk}') |
|
print("\n making completion request to proxy") |
|
response = client.completions.create(model="gpt-3.5-turbo", prompt='this is a test request, write a short poem') |
|
print(response) |
|
|
|
return |
|
else: |
|
if headers: |
|
headers = json.loads(headers) |
|
save_worker_config(model=model, alias=alias, api_base=api_base, api_version=api_version, debug=debug, temperature=temperature, max_tokens=max_tokens, request_timeout=request_timeout, max_budget=max_budget, telemetry=telemetry, drop_params=drop_params, add_function_to_prompt=add_function_to_prompt, headers=headers, save=save, config=config, use_queue=use_queue) |
|
try: |
|
import uvicorn |
|
except: |
|
raise ImportError("Uvicorn needs to be imported. Run - `pip install uvicorn`") |
|
if port == 8000 and is_port_in_use(port): |
|
port = random.randint(1024, 49152) |
|
uvicorn.run("litellm.proxy.proxy_server:app", host=host, port=port, workers=num_workers) |
|
|
|
|
|
if __name__ == "__main__": |
|
run_server() |
|
|