|
import os, types |
|
import json |
|
from enum import Enum |
|
import requests |
|
import time |
|
from typing import Callable, Optional |
|
from litellm.utils import ModelResponse, Usage |
|
import litellm |
|
from .prompt_templates.factory import prompt_factory, custom_prompt |
|
import httpx |
|
|
|
class AnthropicConstants(Enum): |
|
HUMAN_PROMPT = "\n\nHuman: " |
|
AI_PROMPT = "\n\nAssistant: " |
|
|
|
class AnthropicError(Exception): |
|
def __init__(self, status_code, message): |
|
self.status_code = status_code |
|
self.message = message |
|
self.request = httpx.Request(method="POST", url="https://api.anthropic.com/v1/complete") |
|
self.response = httpx.Response(status_code=status_code, request=self.request) |
|
super().__init__( |
|
self.message |
|
) |
|
|
|
class AnthropicConfig(): |
|
""" |
|
Reference: https://docs.anthropic.com/claude/reference/complete_post |
|
|
|
to pass metadata to anthropic, it's {"user_id": "any-relevant-information"} |
|
""" |
|
max_tokens_to_sample: Optional[int]=litellm.max_tokens |
|
stop_sequences: Optional[list]=None |
|
temperature: Optional[int]=None |
|
top_p: Optional[int]=None |
|
top_k: Optional[int]=None |
|
metadata: Optional[dict]=None |
|
|
|
def __init__(self, |
|
max_tokens_to_sample: Optional[int]=256, |
|
stop_sequences: Optional[list]=None, |
|
temperature: Optional[int]=None, |
|
top_p: Optional[int]=None, |
|
top_k: Optional[int]=None, |
|
metadata: Optional[dict]=None) -> None: |
|
|
|
locals_ = locals() |
|
for key, value in locals_.items(): |
|
if key != 'self' and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return {k: v for k, v in cls.__dict__.items() |
|
if not k.startswith('__') |
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod)) |
|
and v is not None} |
|
|
|
|
|
|
|
def validate_environment(api_key): |
|
if api_key is None: |
|
raise ValueError( |
|
"Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params" |
|
) |
|
headers = { |
|
"accept": "application/json", |
|
"anthropic-version": "2023-06-01", |
|
"content-type": "application/json", |
|
"x-api-key": api_key, |
|
} |
|
return headers |
|
|
|
def completion( |
|
model: str, |
|
messages: list, |
|
api_base: str, |
|
custom_prompt_dict: dict, |
|
model_response: ModelResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
api_key, |
|
logging_obj, |
|
optional_params=None, |
|
litellm_params=None, |
|
logger_fn=None, |
|
): |
|
headers = validate_environment(api_key) |
|
if model in custom_prompt_dict: |
|
|
|
model_prompt_details = custom_prompt_dict[model] |
|
prompt = custom_prompt( |
|
role_dict=model_prompt_details["roles"], |
|
initial_prompt_value=model_prompt_details["initial_prompt_value"], |
|
final_prompt_value=model_prompt_details["final_prompt_value"], |
|
messages=messages |
|
) |
|
else: |
|
prompt = prompt_factory(model=model, messages=messages, custom_llm_provider="anthropic") |
|
|
|
|
|
config = litellm.AnthropicConfig.get_config() |
|
for k, v in config.items(): |
|
if k not in optional_params: |
|
optional_params[k] = v |
|
|
|
data = { |
|
"model": model, |
|
"prompt": prompt, |
|
**optional_params, |
|
} |
|
|
|
|
|
logging_obj.pre_call( |
|
input=prompt, |
|
api_key=api_key, |
|
additional_args={"complete_input_dict": data, "api_base": api_base}, |
|
) |
|
|
|
|
|
if "stream" in optional_params and optional_params["stream"] == True: |
|
response = requests.post( |
|
api_base, |
|
headers=headers, |
|
data=json.dumps(data), |
|
stream=optional_params["stream"], |
|
) |
|
|
|
if response.status_code != 200: |
|
raise AnthropicError(status_code=response.status_code, message=response.text) |
|
|
|
return response.iter_lines() |
|
else: |
|
response = requests.post( |
|
api_base, headers=headers, data=json.dumps(data) |
|
) |
|
if response.status_code != 200: |
|
raise AnthropicError(status_code=response.status_code, message=response.text) |
|
|
|
|
|
logging_obj.post_call( |
|
input=prompt, |
|
api_key=api_key, |
|
original_response=response.text, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
print_verbose(f"raw model_response: {response.text}") |
|
|
|
try: |
|
completion_response = response.json() |
|
except: |
|
raise AnthropicError( |
|
message=response.text, status_code=response.status_code |
|
) |
|
if "error" in completion_response: |
|
raise AnthropicError( |
|
message=str(completion_response["error"]), |
|
status_code=response.status_code, |
|
) |
|
else: |
|
if len(completion_response["completion"]) > 0: |
|
model_response["choices"][0]["message"]["content"] = completion_response[ |
|
"completion" |
|
] |
|
model_response.choices[0].finish_reason = completion_response["stop_reason"] |
|
|
|
|
|
prompt_tokens = len( |
|
encoding.encode(prompt) |
|
) |
|
completion_tokens = len( |
|
encoding.encode(model_response["choices"][0]["message"].get("content", "")) |
|
) |
|
|
|
model_response["created"] = int(time.time()) |
|
model_response["model"] = model |
|
usage = Usage( |
|
prompt_tokens=prompt_tokens, |
|
completion_tokens=completion_tokens, |
|
total_tokens=prompt_tokens + completion_tokens |
|
) |
|
model_response.usage = usage |
|
return model_response |
|
|
|
def embedding(): |
|
|
|
pass |
|
|