|
import os |
|
import json |
|
from enum import Enum |
|
import requests |
|
import time |
|
from typing import Callable |
|
from litellm.utils import ModelResponse, Usage |
|
|
|
class BasetenError(Exception): |
|
def __init__(self, status_code, message): |
|
self.status_code = status_code |
|
self.message = message |
|
super().__init__( |
|
self.message |
|
) |
|
|
|
def validate_environment(api_key): |
|
headers = { |
|
"accept": "application/json", |
|
"content-type": "application/json", |
|
} |
|
if api_key: |
|
headers["Authorization"] = f"Api-Key {api_key}" |
|
return headers |
|
|
|
def completion( |
|
model: str, |
|
messages: list, |
|
model_response: ModelResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
api_key, |
|
logging_obj, |
|
optional_params=None, |
|
litellm_params=None, |
|
logger_fn=None, |
|
): |
|
headers = validate_environment(api_key) |
|
completion_url_fragment_1 = "https://app.baseten.co/models/" |
|
completion_url_fragment_2 = "/predict" |
|
model = model |
|
prompt = "" |
|
for message in messages: |
|
if "role" in message: |
|
if message["role"] == "user": |
|
prompt += f"{message['content']}" |
|
else: |
|
prompt += f"{message['content']}" |
|
else: |
|
prompt += f"{message['content']}" |
|
data = { |
|
"inputs": prompt, |
|
"prompt": prompt, |
|
"parameters": optional_params, |
|
"stream": True if "stream" in optional_params and optional_params["stream"] == True else False |
|
} |
|
|
|
|
|
logging_obj.pre_call( |
|
input=prompt, |
|
api_key=api_key, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
|
|
response = requests.post( |
|
completion_url_fragment_1 + model + completion_url_fragment_2, |
|
headers=headers, |
|
data=json.dumps(data), |
|
stream=True if "stream" in optional_params and optional_params["stream"] == True else False |
|
) |
|
if 'text/event-stream' in response.headers['Content-Type'] or ("stream" in optional_params and optional_params["stream"] == True): |
|
return response.iter_lines() |
|
else: |
|
|
|
logging_obj.post_call( |
|
input=prompt, |
|
api_key=api_key, |
|
original_response=response.text, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
print_verbose(f"raw model_response: {response.text}") |
|
|
|
completion_response = response.json() |
|
if "error" in completion_response: |
|
raise BasetenError( |
|
message=completion_response["error"], |
|
status_code=response.status_code, |
|
) |
|
else: |
|
if "model_output" in completion_response: |
|
if ( |
|
isinstance(completion_response["model_output"], dict) |
|
and "data" in completion_response["model_output"] |
|
and isinstance( |
|
completion_response["model_output"]["data"], list |
|
) |
|
): |
|
model_response["choices"][0]["message"][ |
|
"content" |
|
] = completion_response["model_output"]["data"][0] |
|
elif isinstance(completion_response["model_output"], str): |
|
model_response["choices"][0]["message"][ |
|
"content" |
|
] = completion_response["model_output"] |
|
elif "completion" in completion_response and isinstance( |
|
completion_response["completion"], str |
|
): |
|
model_response["choices"][0]["message"][ |
|
"content" |
|
] = completion_response["completion"] |
|
elif isinstance(completion_response, list) and len(completion_response) > 0: |
|
if "generated_text" not in completion_response: |
|
raise BasetenError( |
|
message=f"Unable to parse response. Original response: {response.text}", |
|
status_code=response.status_code |
|
) |
|
model_response["choices"][0]["message"]["content"] = completion_response[0]["generated_text"] |
|
|
|
if "details" in completion_response[0] and "tokens" in completion_response[0]["details"]: |
|
model_response.choices[0].finish_reason = completion_response[0]["details"]["finish_reason"] |
|
sum_logprob = 0 |
|
for token in completion_response[0]["details"]["tokens"]: |
|
sum_logprob += token["logprob"] |
|
model_response["choices"][0]["message"]._logprobs = sum_logprob |
|
else: |
|
raise BasetenError( |
|
message=f"Unable to parse response. Original response: {response.text}", |
|
status_code=response.status_code |
|
) |
|
|
|
|
|
prompt_tokens = len(encoding.encode(prompt)) |
|
completion_tokens = len( |
|
encoding.encode(model_response["choices"][0]["message"]["content"]) |
|
) |
|
|
|
model_response["created"] = int(time.time()) |
|
model_response["model"] = model |
|
usage = Usage( |
|
prompt_tokens=prompt_tokens, |
|
completion_tokens=completion_tokens, |
|
total_tokens=prompt_tokens + completion_tokens |
|
) |
|
model_response.usage = usage |
|
return model_response |
|
|
|
def embedding(): |
|
|
|
pass |
|
|