Spaces:
Sleeping
Sleeping
Add input
Browse files- .gitattributes +1 -0
- DeBERTaV3.py +97 -0
- DeBERTaV3/input/cleaned_test.csv +3 -0
- DeBERTaV3/input/cleaned_train.csv +3 -0
- app.py +5 -24
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
DeBERTaV3/input/*.csv filter=lfs diff=lfs merge=lfs -text
|
DeBERTaV3.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
+
from fastai.text.all import *
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
|
10 |
+
torch.serialization.add_safe_globals(['L'])
|
11 |
+
|
12 |
+
class QuestionDataset(Dataset):
|
13 |
+
def __init__(self, X, y, tokenizer):
|
14 |
+
self.text = X
|
15 |
+
self.targets = y
|
16 |
+
self.tok = tokenizer
|
17 |
+
|
18 |
+
def __len__(self):
|
19 |
+
return len(self.text)
|
20 |
+
|
21 |
+
def __getitem__(self, idx):
|
22 |
+
|
23 |
+
text = self.text[idx]
|
24 |
+
targ = self.targets[idx]
|
25 |
+
|
26 |
+
return self.tok(text, padding='max_length',
|
27 |
+
truncation=True,
|
28 |
+
max_length=30,
|
29 |
+
return_tensors="pt")["input_ids"][0], tensor(targ)
|
30 |
+
|
31 |
+
def new_empty(self):
|
32 |
+
return QuestionDataset([], [], self.tok)
|
33 |
+
|
34 |
+
class ModelLoader:
|
35 |
+
def __init__(self):
|
36 |
+
self.path = "DeBERTaV3/input/"
|
37 |
+
self.train_df = pd.read_csv(self.path + "cleaned_train.csv")
|
38 |
+
self.test_df = pd.read_csv(self.path + "cleaned_test.csv")
|
39 |
+
|
40 |
+
self.tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-base')
|
41 |
+
self.df = self.train_df
|
42 |
+
|
43 |
+
# Train/validation split
|
44 |
+
self.X_train, self.X_valid, self.y_train, self.y_valid = train_test_split(
|
45 |
+
self.df["question_text"].tolist(),
|
46 |
+
self.df["target"].tolist(),
|
47 |
+
stratify=self.df["target"],
|
48 |
+
test_size=0.01
|
49 |
+
)
|
50 |
+
|
51 |
+
self.train_ds = QuestionDataset(self.X_train, self.y_train, self.tokenizer)
|
52 |
+
self.valid_ds = QuestionDataset(self.X_valid, self.y_valid, self.tokenizer)
|
53 |
+
|
54 |
+
self.train_dl = DataLoader(self.train_ds, batch_size=256)
|
55 |
+
self.valid_dl = DataLoader(self.valid_ds, batch_size=512)
|
56 |
+
self.dls = DataLoaders(self.train_dl, self.valid_dl)
|
57 |
+
|
58 |
+
self.bert = AutoModelForSequenceClassification.from_pretrained('microsoft/deberta-v3-base').train()
|
59 |
+
|
60 |
+
self.classifier = nn.Sequential(
|
61 |
+
nn.Linear(768, 1024),
|
62 |
+
nn.ReLU(),
|
63 |
+
nn.Dropout(0.5),
|
64 |
+
nn.Linear(1024, 2)
|
65 |
+
)
|
66 |
+
|
67 |
+
self.bert.classifier = self.classifier
|
68 |
+
|
69 |
+
class BertClassifier(nn.Module):
|
70 |
+
def __init__(self, bert):
|
71 |
+
super(BertClassifier, self).__init__()
|
72 |
+
self.bert = bert
|
73 |
+
|
74 |
+
def forward(self, x):
|
75 |
+
return self.bert(x).logits
|
76 |
+
|
77 |
+
self.model = BertClassifier(self.bert)
|
78 |
+
|
79 |
+
# Calculate class weights
|
80 |
+
n_0 = (self.train_df["target"] == 0).sum()
|
81 |
+
n_1 = (self.train_df["target"] == 1).sum()
|
82 |
+
n = n_0 + n_1
|
83 |
+
|
84 |
+
self.class_weights = tensor([n / (n + n_0), n / (n + n_1)])
|
85 |
+
self.learn = Learner(self.dls, self.model,
|
86 |
+
loss_func=nn.CrossEntropyLoss(weight=self.class_weights),
|
87 |
+
metrics=[accuracy, F1Score()]).to_fp16()
|
88 |
+
try:
|
89 |
+
# First attempt: Try loading with weights_only=True
|
90 |
+
self.learn.load('fastai_QIQC-deberta-v3', strict=False, weights_only=True)
|
91 |
+
except Exception as e:
|
92 |
+
print(f"Warning: Could not load with weights_only=True. Falling back to default loading. Error: {e}")
|
93 |
+
# Second attempt: Fall back to regular loading if the first attempt fails
|
94 |
+
self.learn.load('fastai_QIQC-deberta-v3', strict=False)
|
95 |
+
|
96 |
+
def get_learner(self):
|
97 |
+
return self.learn
|
DeBERTaV3/input/cleaned_test.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c2a623a1d168b9b2194021ee7f0cadbe02b91ff1fef44ecf2359ef571e7f12c
|
3 |
+
size 35730197
|
DeBERTaV3/input/cleaned_train.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f87965feb2d3d9a46af19a4ebc645e951afb86219d7f7bfe8b5a6e2e06a7980
|
3 |
+
size 126708414
|
app.py
CHANGED
@@ -12,6 +12,7 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
12 |
from fastai.vision.all import *
|
13 |
from fastai.text.all import *
|
14 |
from torch.utils.data import Dataset
|
|
|
15 |
|
16 |
model_lst = ["DeBERTaV3", "BiLSTM"]
|
17 |
|
@@ -72,31 +73,11 @@ class QuestionDataset(Dataset):
|
|
72 |
def new_empty(self):
|
73 |
return QuestionDataset([], [], self.tok)
|
74 |
|
75 |
-
|
|
|
76 |
print("Learner loaded successfully.")
|
77 |
|
78 |
-
|
79 |
-
# bert = AutoModelForSequenceClassification.from_pretrained('microsoft/deberta-v3-base').train()
|
80 |
-
|
81 |
-
# classifier = nn.Sequential(
|
82 |
-
# nn.Linear(768, 1024),
|
83 |
-
# nn.ReLU(),
|
84 |
-
# nn.Dropout(0.5),
|
85 |
-
# nn.Linear(1024, 2)
|
86 |
-
# )
|
87 |
-
|
88 |
-
# bert.classifier = classifier
|
89 |
-
|
90 |
-
# class BertClassifier(Module):
|
91 |
-
# def __init__(self, bert):
|
92 |
-
# self.bert = bert
|
93 |
-
# def forward(self, x):
|
94 |
-
# x = self.bert(x)
|
95 |
-
# return x.logits
|
96 |
-
|
97 |
-
# model = BertClassifier(bert)
|
98 |
-
|
99 |
-
## Recreate the DataLoader
|
100 |
class TestDS:
|
101 |
def __init__(self, tensors):
|
102 |
self.tensors = tensors
|
@@ -118,7 +99,7 @@ class DeBERTaV3Model:
|
|
118 |
test_dl = DataLoader(TestDS(test_tensor), bs=128)
|
119 |
|
120 |
# Get predictions
|
121 |
-
preds =
|
122 |
label = "Insincere" if (F.softmax(preds[0], dim=1)[:, 1]>0.4878) else "Sincere"
|
123 |
probs = {
|
124 |
"Probability": float(F.softmax(preds[0], dim=1)[:, 1]),
|
|
|
12 |
from fastai.vision.all import *
|
13 |
from fastai.text.all import *
|
14 |
from torch.utils.data import Dataset
|
15 |
+
from DeBERTaV3 import ModelLoader
|
16 |
|
17 |
model_lst = ["DeBERTaV3", "BiLSTM"]
|
18 |
|
|
|
73 |
def new_empty(self):
|
74 |
return QuestionDataset([], [], self.tok)
|
75 |
|
76 |
+
model_loader = ModelLoader()
|
77 |
+
learner = model_loader.get_learner()
|
78 |
print("Learner loaded successfully.")
|
79 |
|
80 |
+
## DataLoader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
class TestDS:
|
82 |
def __init__(self, tensors):
|
83 |
self.tensors = tensors
|
|
|
99 |
test_dl = DataLoader(TestDS(test_tensor), bs=128)
|
100 |
|
101 |
# Get predictions
|
102 |
+
preds = learner.get_preds(dl=test_dl)
|
103 |
label = "Insincere" if (F.softmax(preds[0], dim=1)[:, 1]>0.4878) else "Sincere"
|
104 |
probs = {
|
105 |
"Probability": float(F.softmax(preds[0], dim=1)[:, 1]),
|