Spaces:
Runtime error
Runtime error
import streamlit as st | |
from streamlit_chat import message | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.document_loaders import PyPDFLoader, DirectoryLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.llms import CTransformers | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.memory import ConversationBufferMemory | |
import streamlit.components.v1 as components | |
from templatesStreamlit import * | |
import tempfile | |
import os | |
# Funcion para leer los documentos | |
def load_documents(uploaded_files): | |
docs = [] | |
temp_dir = tempfile.TemporaryDirectory() | |
for file in uploaded_files: | |
temp_filepath = os.path.join(temp_dir.name, file.name) | |
with open(temp_filepath, "wb") as f: | |
f.write(file.getvalue()) | |
loader = PyPDFLoader(temp_filepath) | |
docs.extend(loader.load()) | |
# loader = DirectoryLoader('data/', glob="*.pdf", loader_cls=PyPDFLoader) | |
# documents = loader.load() | |
return docs | |
# Funcion para convertir el texto en chunks | |
def split_text_into_chunks(documents): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) | |
text_chunks = text_splitter.split_documents(documents) | |
return text_chunks | |
def get_vectorstore(text_chunks): | |
embbedings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': "cpu"}) | |
vector_store = FAISS.from_documents(text_chunks, embbedings) | |
return vector_store | |
# def create_llms_model(): | |
# llm = CTransformers(model="mistral-7b-instruct-v0.1.Q4_K_M.gguf", config={'max_new_tokens': 512, 'temperature': 0.01}) | |
# return llm | |
def get_conversation_chain(vector_store): | |
llm = CTransformers(model="mistral-7b-instruct-v0.1.Q4_K_M.gguf", config={'max_new_tokens': 512, 'temperature': 0.01}) | |
#Creamos la memoria | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
# Create chain (lANGCHAIN) | |
conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff', | |
retriever=vector_store.as_retriever(search_kwargs={"k": 2}), | |
memory=memory) | |
return conversation_chain | |
def handle_userinput(user_question): | |
response = st.session_state.conversation({'question': user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.write(user_template2.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
else: | |
st.write(bot_template2.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
def main(): | |
url_logo = "https://github.com/manolito99/DataScienceLLM/blob/main/static/logo_alternativo.png?raw=true" | |
st.set_page_config(page_title="LLM-RAG", | |
page_icon=url_logo) | |
st.write(css, unsafe_allow_html=True) | |
titulo = f""" | |
<div class="btn-neon"> | |
<span class="icon"><img src=https://github.com/manolito99/DataScienceLLM/blob/main/static/Mistral.png?raw=true></span> | |
Mistral7b + Streamlit | |
<span class="icon"><img src=https://github.com/manolito99/DataScienceLLM/blob/main/static/streamlit.png?raw=true></span> | |
</div> | |
""" | |
st.markdown(titulo, unsafe_allow_html=True) | |
presentacion = f""" | |
<div class="skill"> | |
<div class="skill-content"> | |
<div class="skill-img-box"> | |
<a href="https://www.linkedin.com/in/manueloteromarquez/" target="_blank"> | |
<img src="https://media.licdn.com/dms/image/C4D03AQEsabRcMGkMmQ/profile-displayphoto-shrink_800_800/0/1663585925916?e=1708560000&v=beta&t=1Ofx1PsbTSlMcNIVCxznEjtIA_aIlTVaJm52toMKddU" alt="Tu descripción"> | |
</a> | |
</div> | |
<div class="skill-detail"> | |
<h2 class="skill-title">By Manuel Otero Márquez </h2> | |
<p>Esto es un ejemplo de como se pueden implementar LLM de forma local y con CPU</p> | |
<div class="skill-progress"> | |
<div class="progress progress-1"></div> | |
</div> | |
</div> | |
</div> | |
</div> | |
""" | |
st.markdown(presentacion, unsafe_allow_html=True) | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("Hazle preguntas a tus documentos PDFs :books:") | |
with st.sidebar: | |
st.subheader("Tus Documentos") | |
pdf_docs = st.file_uploader( | |
"Sube tus PDFs aquí y pulsa 'Procesar PDF'", accept_multiple_files=True) | |
if not pdf_docs: | |
st.info("Sube tus pdfs para continuar.") | |
st.stop() | |
if st.button("Procesar PDF"): | |
with st.spinner("Procesando"): | |
# get pdf text | |
documents = load_documents(pdf_docs) | |
print(documents) | |
text_chunks = split_text_into_chunks(documents) | |
# create vector store | |
vectorstore = get_vectorstore(text_chunks) | |
# create conversation chain | |
st.session_state.conversation = get_conversation_chain(vectorstore) | |
user_question = st.text_input("Adelante pregunta") | |
if user_question: | |
with st.spinner("Procesando respuesta"): | |
handle_userinput(user_question) | |
if __name__ == '__main__': | |
main() |