input fix
Browse files
app.py
CHANGED
@@ -20,8 +20,8 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
20 |
|
21 |
image_size = 384
|
22 |
transform = transforms.Compose([
|
23 |
-
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
|
24 |
transforms.ToTensor(),
|
|
|
25 |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
26 |
])
|
27 |
|
@@ -31,6 +31,7 @@ model.eval()
|
|
31 |
model = model.to(device)
|
32 |
|
33 |
def inference(raw_image):
|
|
|
34 |
image = transform(raw_image).unsqueeze(0).to(device)
|
35 |
with torch.no_grad():
|
36 |
caption = model.generate(image, sample=False, num_beams=1, max_length=60, min_length=5)
|
@@ -40,8 +41,16 @@ def inference(raw_image):
|
|
40 |
inputs = [gr.Image(type='pil', interactive=False),]
|
41 |
outputs = gr.outputs.Textbox(label="Caption")
|
42 |
|
43 |
-
title = "FuseCap"
|
44 |
description = "Gradio demo for FuseCap: Leveraging Large Language Models to Fuse Visual Data into Enriched Image Captions. This demo features a BLIP-based model, trained using FuseCap."
|
45 |
|
46 |
article = "place holder"
|
47 |
-
gr.Interface(inference,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
image_size = 384
|
22 |
transform = transforms.Compose([
|
|
|
23 |
transforms.ToTensor(),
|
24 |
+
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
|
25 |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
26 |
])
|
27 |
|
|
|
31 |
model = model.to(device)
|
32 |
|
33 |
def inference(raw_image):
|
34 |
+
# raw_image = torch.tensor(raw_image)
|
35 |
image = transform(raw_image).unsqueeze(0).to(device)
|
36 |
with torch.no_grad():
|
37 |
caption = model.generate(image, sample=False, num_beams=1, max_length=60, min_length=5)
|
|
|
41 |
inputs = [gr.Image(type='pil', interactive=False),]
|
42 |
outputs = gr.outputs.Textbox(label="Caption")
|
43 |
|
|
|
44 |
description = "Gradio demo for FuseCap: Leveraging Large Language Models to Fuse Visual Data into Enriched Image Captions. This demo features a BLIP-based model, trained using FuseCap."
|
45 |
|
46 |
article = "place holder"
|
47 |
+
iface = gr.Interface(fn=inference,
|
48 |
+
inputs="image",
|
49 |
+
outputs="text",
|
50 |
+
title="FuseCap",
|
51 |
+
description=description,
|
52 |
+
article=article,
|
53 |
+
examples=[['birthday_dog.jpeg']],
|
54 |
+
enable_queue=True)
|
55 |
+
iface.launch()
|
56 |
+
# gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['birthday_dog.jpeg']]).launch(enable_queue=True)
|