noamrot's picture
easier imports
224bafa
raw
history blame
1.43 kB
import gradio as gr
from PIL import Image
import torch
from transformers import BlipProcessor, BlipForConditionalGeneration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
processor = BlipProcessor.from_pretrained("noamrot/FuseCap")
model = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap").to(device)
def inference(raw_image):
text = "a picture of "
inputs = processor(raw_image, text, return_tensors="pt").to(device)
out = model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
inputs = [gr.Image(type='pil', interactive=False),]
outputs = gr.outputs.Textbox(label="Caption")
description = "Gradio demo for FuseCap: Leveraging Large Language Models to Fuse Visual Data into Enriched Image Captions. This demo features a BLIP-based model, trained using FuseCap."
examples = [["surfer.jpg"], ["bike.jpg"]]
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2305.17718' target='_blank'>FuseCap: Leveraging Large Language Models to Fuse Visual Data into Enriched Image Captions</a>"
iface = gr.Interface(fn=inference,
inputs="image",
outputs="text",
title="FuseCap",
description=description,
article=article,
examples=examples,
enable_queue=True)
iface.launch()