Spaces:
Runtime error
Runtime error
import spacy | |
import wikipedia | |
from wikipedia.exceptions import DisambiguationError | |
from transformers import TFAutoModel, AutoTokenizer | |
import numpy as np | |
import pandas as pd | |
import faiss | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except: | |
spacy.cli.download("en_core_web_sm") | |
nlp = spacy.load("en_core_web_sm") | |
wh_words = ['what', 'who', 'how', 'when', 'which'] | |
def get_concepts(text): | |
text = text.lower() | |
doc = nlp(text) | |
concepts = [] | |
for chunk in doc.noun_chunks: | |
if chunk.text not in wh_words: | |
concepts.append(chunk.text) | |
return concepts | |
def get_passages(text, k=100): | |
doc = nlp(text) | |
passages = [] | |
passage_len = 0 | |
passage = "" | |
sents = list(doc.sents) | |
for i in range(len(sents)): | |
sen = sents[i] | |
passage_len+=len(sen) | |
if passage_len >= k: | |
passages.append(passage) | |
passage = sen.text | |
passage_len = len(sen) | |
continue | |
elif i==(len(sents)-1): | |
passage+=" "+sen.text | |
passages.append(passage) | |
passage = "" | |
passage_len = 0 | |
continue | |
passage+=" "+sen.text | |
return passages | |
def get_dicts_for_dpr(concepts, n_results=20, k=100): | |
dicts = [] | |
for concept in concepts: | |
wikis = wikipedia.search(concept, results=n_results) | |
print(concept, "No of Wikis: ",len(wikis)) | |
for wiki in wikis: | |
try: | |
html_page = wikipedia.page(title = wiki, auto_suggest = False) | |
except DisambiguationError: | |
continue | |
passages = get_passages(html_page.content, k=k) | |
for passage in passages: | |
i_dicts = {} | |
i_dicts['text'] = passage | |
i_dicts['title'] = wiki | |
dicts.append(i_dicts) | |
return dicts | |
passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2") | |
query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2") | |
p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2") | |
q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2") | |
def get_title_text_combined(passage_dicts): | |
res = [] | |
for p in passage_dicts: | |
res.append(tuple((p['title'], p['text']))) | |
return res | |
def extracted_passage_embeddings(processed_passages, max_length=156): | |
passage_inputs = p_tokenizer.batch_encode_plus( | |
processed_passages, | |
add_special_tokens=True, | |
truncation=True, | |
padding="max_length", | |
max_length=max_length, | |
return_token_type_ids=True | |
) | |
passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), | |
np.array(passage_inputs['attention_mask']), | |
np.array(passage_inputs['token_type_ids'])], | |
batch_size=64, | |
verbose=1) | |
return passage_embeddings | |
def extracted_query_embeddings(queries, max_length=64): | |
query_inputs = q_tokenizer.batch_encode_plus( | |
queries, | |
add_special_tokens=True, | |
truncation=True, | |
padding="max_length", | |
max_length=max_length, | |
return_token_type_ids=True | |
) | |
query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']), | |
np.array(query_inputs['attention_mask']), | |
np.array(query_inputs['token_type_ids'])], | |
batch_size=1, | |
verbose=1) | |
return query_embeddings | |
def search(question): | |
concepts = get_concepts(question) | |
print("concepts: ",concepts) | |
dicts = get_dicts_for_dpr(concepts, n_results=1) | |
print("dicts len: ", len(dicts)) | |
processed_passages = get_title_text_combined(dicts) | |
passage_embeddings = extracted_passage_embeddings(processed_passages) | |
query_embeddings = extracted_query_embeddings([question]) | |
faiss_index = faiss.IndexFlatL2(128) | |
faiss_index.add(passage_embeddings.pooler_output) | |
prob, index = faiss_index.search(query_embeddings.pooler_output, k=10) | |
return pd.DataFrame([dicts[i] for i in index[0]]) | |
import gradio as gr | |
inp = gr.inputs.Textbox(lines=2, default="Who is aamir khan?", label="Question") | |
out = gr.outputs.Dataframe(label="Answers") | |
gr.Interface(fn=search, inputs=inp, outputs=out).launch() |