nlpblogs commited on
Commit
352b0d0
·
verified ·
1 Parent(s): 01f377d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -79
app.py CHANGED
@@ -8,49 +8,61 @@ import json
8
  import plotly.express as px
9
 
10
  st.subheader("AI CSV and XLSX Data Analyzer", divider="blue")
11
- st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
12
 
13
  expander = st.expander("**Important notes on the AI CSV and XLSX Data Analyzer**")
14
- expander.write(
15
- """
16
- **Supported File Formats:** This app accepts files in .csv and .xlsx formats.
17
- **How to Use:** Upload your file first. Select two different columns from your data to visualize in a Tree Map. Then, type your question into the text area provided and click the 'Retrieve your answer' button.
18
- **Tree Map:** Your uploaded data is presented in an interactive Tree Map for visual exploration. Click on any area within the map to access specific data insights.
19
- **Usage Limits:** You can ask up to 5 questions.
20
- **Subscription Management:** This app offers a one-day free trial, followed by a one-day subscription, expiring after 24 hours. If you are interested in building your own AI CSV and XLSX Data Analyzer, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app in five business days. If you wish to delete your Account with us, please contact us at info@nlpblogs.com
21
- **Customization:** To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
22
- **File Handling and Errors:** (a) The app may provide an inaccurate answer if the information is missing from the relevant cell. (b) The app may display an error message if your file has errors, date values or float numbers (0.5, 1.2, 4.5 etc.).
23
- For any errors or inquiries, please contact us at info@nlpblogs.com
24
- """
25
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  with st.sidebar:
28
  container = st.container(border=True)
29
- container.write(
30
- "**Question-Answering (QA)** is the task of retrieving the answer to a question from a given text (knowledge base), which is used as context."
31
- )
32
- st.subheader("Related NLP Web Apps", divider="blue")
33
- st.link_button(
34
- "AI Google Sheet Data Analyzer",
35
- "https://nlpblogs.com/shop/table-question-answering-qa/google-sheet-qa-demo-app/",
36
- type="primary",
37
- )
38
-
39
- if "question_attempts" not in st.session_state:
40
- st.session_state["question_attempts"] = 0
41
  max_attempts = 5
42
 
43
- upload_file = st.file_uploader(
44
- "Upload your file. Accepted file formats include: .csv, .xlsx", type=["csv", "xlsx"]
45
- )
46
 
47
  if upload_file is not None:
48
- file_extension = upload_file.name.split(".")[-1].lower()
49
  try:
50
- if file_extension == "csv":
51
  df_original = pd.read_csv(upload_file, na_filter=False)
52
- elif file_extension == "xlsx":
 
53
  df_original = pd.read_excel(upload_file, na_filter=False)
 
54
  else:
55
  st.warning("Unsupported file type.")
56
  st.stop()
@@ -59,26 +71,23 @@ if upload_file is not None:
59
  st.error("Error: The file contains missing values.")
60
  st.stop()
61
  else:
62
- st.session_state.df_original = df_original
63
 
64
  all_columns = df_original.columns.tolist()
65
  st.divider()
66
- st.write(
67
- "Select two different columns from your data to visualize in a **Tree Map**. "
68
- )
69
-
70
  parent_column = st.selectbox("Select the parent column:", all_columns)
71
  value_column = st.selectbox("Select the value column:", all_columns)
 
72
  if parent_column and value_column:
73
  if parent_column == value_column:
74
- st.warning(
75
- "Warning: You have selected the same column for both the parent and value column. Please select two different columns from your data."
76
- )
77
  else:
78
- df_treemap = df_original.copy()
79
-
80
  path_columns = [px.Constant("all"), parent_column, value_column]
81
- fig = px.treemap(df_treemap, path=path_columns)
 
82
  fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
83
  st.subheader("Tree Map", divider="blue")
84
  st.plotly_chart(fig)
@@ -102,55 +111,29 @@ if upload_file is not None:
102
  st.stop()
103
 
104
  st.divider()
105
-
106
 
107
  def clear_question():
108
  st.session_state["question"] = ""
109
 
110
-
111
- question = st.text_input(
112
- "Type your question here and then press **Retrieve your answer**:", key="question"
113
- )
114
  st.button("Clear question", on_click=clear_question)
115
 
116
- # --- Sampling Implementation ---
117
- SAMPLE_SIZE = 500 # Define the number of rows to sample
118
- if "df_original" in st.session_state:
119
- df_for_qa = st.session_state.df_original
120
- if df_for_qa.shape[0] > SAMPLE_SIZE:
121
- st.warning(f"The uploaded file has {df_for_qa.shape[0]} rows. For faster processing and to avoid memory issues, a sample of {SAMPLE_SIZE} rows will be used for question answering.")
122
- df_for_qa = df_for_qa.sample(n=SAMPLE_SIZE, random_state=42) # Set random_state for reproducibility
123
- else:
124
- st.info("The file size is within the limit, using the entire dataset for question answering.")
125
- else:
126
- df_for_qa = None
127
- # --- End of Sampling Implementation ---
128
 
129
  if st.button("Retrieve your answer"):
130
- if st.session_state["question_attempts"] >= max_attempts:
131
  st.error(f"You have asked {max_attempts} questions. Maximum question attempts reached.")
132
  st.stop()
133
- st.session_state["question_attempts"] += 1
134
-
135
  with st.spinner("Wait for it...", show_time=True):
136
- time.sleep(2) # Reduced sleep time for better responsiveness
137
-
138
- if df_for_qa is not None:
139
- try:
140
- tqa = pipeline(
141
- task="table-question-answering",
142
- model="microsoft/tapex-large-finetuned-wtq",
143
- )
144
- answer = tqa(table=df_for_qa, query=question)["answer"]
145
- st.write(answer)
146
- except Exception as e:
147
- st.error(f"An error occurred during question answering: {e}")
148
- else:
149
- st.warning("Please upload a file first.")
150
 
151
  st.divider()
152
- st.write(
153
- f"Number of questions asked: {st.session_state['question_attempts']}/{max_attempts}"
154
- )
155
 
156
 
 
8
  import plotly.express as px
9
 
10
  st.subheader("AI CSV and XLSX Data Analyzer", divider="blue")
11
+ st.link_button("by nlpblogs", "https://nlpblogs.com", type = "tertiary")
12
 
13
  expander = st.expander("**Important notes on the AI CSV and XLSX Data Analyzer**")
14
+ expander.write('''
15
+
16
+ **Supported File Formats:**
17
+ This app accepts files in .csv and .xlsx formats.
18
+
19
+ **How to Use:**
20
+ Upload your file first. Select two different columns from your data to visualize in a Tree Map. Then, type your question into the text area provided and click the 'Retrieve your answer' button.
21
+
22
+ **Tree Map:**
23
+ Your uploaded data is presented in an interactive Tree Map for visual exploration. Click on any area within the map to access specific data insights.
24
+
25
+ **Usage Limits:**
26
+ You can ask up to 5 questions.
27
+
28
+ **Subscription Management:**
29
+ This app offers a one-day free trial, followed by a one-day subscription, expiring after 24 hours. If you are interested in building your own AI CSV and XLSX Data Analyzer, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app in five business days. If you wish to delete your Account with us, please contact us at info@nlpblogs.com
30
+
31
+ **Customization:**
32
+ To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
33
+
34
+ **File Handling and Errors:**
35
+ (a) The app may provide an inaccurate answer if the information is missing from the relevant cell. (b) The app may display an error message if your file has errors, date values or float numbers (0.5, 1.2, 4.5 etc.).
36
+
37
+ For any errors or inquiries, please contact us at info@nlpblogs.com
38
+
39
+ ''')
40
+
41
 
42
  with st.sidebar:
43
  container = st.container(border=True)
44
+ container.write("**Question-Answering (QA)** is the task of retrieving the answer to a question from a given text (knowledge base), which is used as context.")
45
+ st.subheader("Related NLP Web Apps", divider = "blue")
46
+ st.link_button("AI Google Sheet Data Analyzer", "https://nlpblogs.com/shop/table-question-answering-qa/google-sheet-qa-demo-app/", type = "primary")
47
+
48
+
49
+ if 'question_attempts' not in st.session_state:
50
+ st.session_state['question_attempts'] = 0
51
+
 
 
 
 
52
  max_attempts = 5
53
 
54
+
55
+ upload_file = st.file_uploader("Upload your file. Accepted file formats include: .csv, .xlsx", type=['csv', 'xlsx'])
 
56
 
57
  if upload_file is not None:
58
+ file_extension = upload_file.name.split('.')[-1].lower()
59
  try:
60
+ if file_extension == 'csv':
61
  df_original = pd.read_csv(upload_file, na_filter=False)
62
+
63
+ elif file_extension == 'xlsx':
64
  df_original = pd.read_excel(upload_file, na_filter=False)
65
+
66
  else:
67
  st.warning("Unsupported file type.")
68
  st.stop()
 
71
  st.error("Error: The file contains missing values.")
72
  st.stop()
73
  else:
74
+ st.session_state.df_original = df_original
75
 
76
  all_columns = df_original.columns.tolist()
77
  st.divider()
78
+ st.write("Select two different columns from your data to visualize in a **Tree Map**. ")
79
+
 
 
80
  parent_column = st.selectbox("Select the parent column:", all_columns)
81
  value_column = st.selectbox("Select the value column:", all_columns)
82
+
83
  if parent_column and value_column:
84
  if parent_column == value_column:
85
+ st.warning("Warning: You have selected the same column for both the parent and value column. Please select two different columns from your data.")
 
 
86
  else:
87
+ df_treemap = df_original.copy()
 
88
  path_columns = [px.Constant("all"), parent_column, value_column]
89
+ fig = px.treemap(df_treemap,
90
+ path=path_columns)
91
  fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
92
  st.subheader("Tree Map", divider="blue")
93
  st.plotly_chart(fig)
 
111
  st.stop()
112
 
113
  st.divider()
114
+
115
 
116
  def clear_question():
117
  st.session_state["question"] = ""
118
 
119
+ question = st.text_input("Type your question here and then press **Retrieve your answer**:", key="question")
 
 
 
120
  st.button("Clear question", on_click=clear_question)
121
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
123
  if st.button("Retrieve your answer"):
124
+ if st.session_state['question_attempts'] >= max_attempts:
125
  st.error(f"You have asked {max_attempts} questions. Maximum question attempts reached.")
126
  st.stop()
127
+ st.session_state['question_attempts'] += 1
128
+
129
  with st.spinner("Wait for it...", show_time=True):
130
+ time.sleep(5)
131
+ if df_original is not None:
132
+ tqa = pipeline(task="table-question-answering", model="microsoft/tapex-large-finetuned-wtq")
133
+ st.write(tqa(table=df_original, query=question)['answer'])
 
 
 
 
 
 
 
 
 
 
134
 
135
  st.divider()
136
+ st.write(f"Number of questions asked: {st.session_state['question_attempts']}/{max_attempts}")
137
+
 
138
 
139