nlmaldonadog
commited on
Commit
•
48fa2ff
1
Parent(s):
a33c5d3
Upload files
Browse files- NORMAL2-IM-0035-0001.jpeg +0 -0
- NORMAL2-IM-0349-0001.jpeg +0 -0
- NORMAL2-IM-0374-0001.jpeg +0 -0
- app.py +26 -0
- person78_bacteria_386.jpeg +0 -0
- person83_bacteria_407.jpeg +0 -0
- person91_bacteria_447.jpeg +0 -0
- requirements.txt +2 -0
NORMAL2-IM-0035-0001.jpeg
ADDED
NORMAL2-IM-0349-0001.jpeg
ADDED
NORMAL2-IM-0374-0001.jpeg
ADDED
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import from_pretrained_fastai
|
2 |
+
import gradio as gr
|
3 |
+
from fastai.vision.all import *
|
4 |
+
|
5 |
+
|
6 |
+
repo_id = "nlmaldonadog/pract1-firstmodel-chest-xray"
|
7 |
+
|
8 |
+
learner = from_pretrained_fastai(repo_id)
|
9 |
+
labels = learner.dls.vocab
|
10 |
+
|
11 |
+
# Definimos una función que se encarga de llevar a cabo las predicciones
|
12 |
+
def predict(img):
|
13 |
+
#img = PILImage.create(img)
|
14 |
+
pred,pred_idx,probs = learner.predict(img)
|
15 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
16 |
+
|
17 |
+
# Creamos la interfaz y la lanzamos.
|
18 |
+
lista = [
|
19 |
+
'NORMAL2-IM-0035-0001.jpeg',
|
20 |
+
'NORMAL2-IM-0349-0001.jpeg',
|
21 |
+
'NORMAL2-IM-0374-0001.jpeg',
|
22 |
+
'person78_bacteria_386.jpeg',
|
23 |
+
'person83_bacteria_407.jpeg',
|
24 |
+
'person91_bacteria_447.jpeg'
|
25 |
+
]
|
26 |
+
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Label(num_top_classes=2),examples=lista).launch(share=False)
|
person78_bacteria_386.jpeg
ADDED
person83_bacteria_407.jpeg
ADDED
person91_bacteria_447.jpeg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
fastai
|
2 |
+
toml
|